scholarly journals Physical mapping resources for large plant genomes: radiation hybrids for wheat D-genome progenitor Aegilops tauschii

BMC Genomics ◽  
2012 ◽  
Vol 13 (1) ◽  
pp. 597 ◽  
Author(s):  
Ajay Kumar ◽  
Kristin Simons ◽  
Muhammad J Iqbal ◽  
Monika de Jiménez ◽  
Filippo M Bassi ◽  
...  
BMC Genomics ◽  
2015 ◽  
Vol 16 (1) ◽  
Author(s):  
Ajay Kumar ◽  
Raed Seetan ◽  
Mohamed Mergoum ◽  
Vijay K. Tiwari ◽  
Muhammad J. Iqbal ◽  
...  

The Nucleus ◽  
2015 ◽  
Vol 58 (3) ◽  
pp. 199-206 ◽  
Author(s):  
Yasuhiko Mukai ◽  
Gentatsu Okamoto ◽  
Shiho Kiryu ◽  
Satoru Takemoto ◽  
Santosh Kumar Sharma ◽  
...  

Genetics ◽  
2000 ◽  
Vol 155 (1) ◽  
pp. 361-367 ◽  
Author(s):  
Wolfgang Spielmeyer ◽  
Odile Moullet ◽  
André Laroche ◽  
Evans S Lagudah

Abstract A detailed RFLP map was constructed of the distal end of the short arm of chromosome 1D of Aegilops tauschii, the diploid D-genome donor species of hexaploid wheat. Ae. tauschii was used to overcome some of the limitations commonly associated with molecular studies of wheat such as low levels of DNA polymorphism. Detection of multiple loci by most RFLP probes suggests that gene duplication events have occurred throughout this chromosomal region. Large DNA fragments isolated from a BAC library of Ae. tauschii were used to determine the relationship between physical and genetic distance at seed storage protein loci located at the distal end of chromosome 1DS. Highly recombinogenic regions were identified where the ratio of physical to genetic distance was estimated to be <20 kb/cM. These results are discussed in relation to the genome-wide estimate of the relationship between physical and genetic distance.


Genetics ◽  
2003 ◽  
Vol 164 (2) ◽  
pp. 685-697 ◽  
Author(s):  
Edward K Kentner ◽  
Michael L Arnold ◽  
Susan R Wessler

Abstract The Louisiana iris species Iris brevicaulis and I. fulva are morphologically and karyotypically distinct yet frequently hybridize in nature. A group of high-copy-number TY3/gypsy-like retrotransposons was characterized from these species and used to develop molecular markers that take advantage of the abundance and distribution of these elements in the large iris genome. The copy number of these IRRE elements (for iris retroelement), is ∼1 × 105, accounting for ∼6–10% of the ∼10,000-Mb haploid Louisiana iris genome. IRRE elements are transcriptionally active in I. brevicaulis and I. fulva and their F1 and backcross hybrids. The LTRs of the elements are more variable than the coding domains and can be used to define several distinct IRRE subfamilies. Transposon display or S-SAP markers specific to two of these subfamilies have been developed and are highly polymorphic among wild-collected individuals of each species. As IRRE elements are present in each of 11 iris species tested, the marker system has the potential to provide valuable comparative data on the dynamics of retrotransposition in large plant genomes.


2019 ◽  
Author(s):  
Moses Nyine ◽  
Elina Adhikari ◽  
Marshall Clinesmith ◽  
Katherine W. Jordan ◽  
Allan K. Fritz ◽  
...  

AbstractIntrogression from wild relatives is a valuable source of novel allelic diversity for breeding. We investigated the genomic patterns of introgression from Aegilops tauschii, the diploid ancestor of the wheat D genome, into winter wheat (Triticum aestivum) cultivars. The population of 351 BC1F3:5 lines was selected based on phenology from crosses between six hexaploid wheat lines and 21 wheat-Ae. tauschii octoploids. SNP markers developed for this population and a diverse panel of 116 Ae. tauschii accessions by complexity-reduced genome sequencing were used to detect introgression based on the identity-by-descent analysis. Overall, introgression frequency positively correlated with recombination rate, with a high incidence of introgression at the ends of chromosomes and low in the pericentromeric regions, and was negatively related to sequence divergence between the parental genomes. Reduced introgression in the pericentromeric low-recombining regions spans nearly 2/3 of each chromosome arm, suggestive of the polygenic nature of introgression barriers that could be associated with multilocus negative epistasis between the alleles of wild and cultivated wheat. On the contrary, negative selection against the wild allele of Tg, controlling free-threshing trait and located in the high-recombining chromosomal region, led to reduced introgression only within ∼10 Mbp region around Tg. These results are consistent with the effect of selection on linked variation described by the Hill-Robertson effect, and offer insights into the introgression population development for crop imrpovement to ensure retention of introgressed diversity across entire genome.


2008 ◽  
Vol 6 (02) ◽  
pp. 79-84 ◽  
Author(s):  
Parveen Chhuneja ◽  
Satinder Kaur ◽  
Kuldeep Singh ◽  
H. S. Dhaliwal

Karnal bunt (KB) of wheat, caused byTilletia indica(Mitra) Mundkur, adversely affects international wheat trading and the movement of germplasm between countries due to quarantine restrictions. Breeding for host plant resistance requires the identification of KB resistance sources. Accessions of the D genome progenitor of bread wheat,Aegilops tauschii, were screened in a specially designed screen-house, where the optimum environmental conditions conducive for KB development were simulated by controlling temperature, humidity, fogging and shading. The 183 accessions were subjected to artificial inoculation with a mixture of nine KB isolates, and seven proved highly resistant and four moderately resistant over three rounds of screening over 3 years.


Author(s):  
Ajay Kumar ◽  
Filippo M. Bassi ◽  
Monika K. Michalak de Jimenez ◽  
Farhad Ghavami ◽  
Mona Mazaheri ◽  
...  

Nature ◽  
2017 ◽  
Vol 551 (7681) ◽  
pp. 498-502 ◽  
Author(s):  
Ming-Cheng Luo ◽  
Yong Q. Gu ◽  
Daniela Puiu ◽  
Hao Wang ◽  
Sven O. Twardziok ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document