scholarly journals Construction of a SNP-based genetic linkage map in cultivated peanut based on large scale marker development using next-generation double-digest restriction-site-associated DNA sequencing (ddRADseq)

BMC Genomics ◽  
2014 ◽  
Vol 15 (1) ◽  
pp. 351 ◽  
Author(s):  
Xiaojing Zhou ◽  
Youlin Xia ◽  
Xiaoping Ren ◽  
Yulin Chen ◽  
Li Huang ◽  
...  
2016 ◽  
Vol 42 (2) ◽  
pp. 159 ◽  
Author(s):  
Jian-Bin GUO ◽  
Li HUANG ◽  
Liang-Qiang CHENG ◽  
Wei-Gang CHEN ◽  
Xiao-Ping REN ◽  
...  

2011 ◽  
Vol 124 (4) ◽  
pp. 653-664 ◽  
Author(s):  
Hongde Qin ◽  
Suping Feng ◽  
Charles Chen ◽  
Yufang Guo ◽  
Steven Knapp ◽  
...  

2010 ◽  
Vol 10 (1) ◽  
pp. 17 ◽  
Author(s):  
Yanbin Hong ◽  
Xiaoping Chen ◽  
Xuanqiang Liang ◽  
Haiyan Liu ◽  
Guiyuan Zhou ◽  
...  

Agronomy ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 114 ◽  
Author(s):  
Xiaoxia Yu ◽  
Mingfei Zhang ◽  
Zhuo Yu ◽  
Dongsheng Yang ◽  
Jingwei Li ◽  
...  

Specific length amplified fragment sequencing (SLAF-seq) is a recently developed high-resolution strategy for the discovery of large-scale de novo genotyping of single nucleotide polymorphism (SNP) markers. In the present research, in order to facilitate genome-guided breeding in potato, this strategy was used to develop a large number of SNP markers and construct a high-density genetic linkage map for tetraploid potato. The genomic DNA extracted from 106 F1 individuals derived from a cross between two tetraploid potato varieties YSP-4 × MIN-021 and their parents was used for high-throughput sequencing and SLAF library construction. A total of 556.71 Gb data, which contained 2269.98 million pair-end reads, were obtained after preprocessing. According to bioinformatics analysis, a total of 838,604 SLAF labels were developed, with an average sequencing depth of 26.14-fold for parents and 15.36-fold for offspring of each SLAF, respectively. In total, 113,473 polymorphic SLAFs were obtained, from which 7638 SLAFs were successfully classified into four segregation patterns. After filtering, a total of 7329 SNP markers were detected for genetic map construction. The final integrated linkage map of tetraploid potato included 3001 SNP markers on 12 linkage groups, and covered 1415.88 cM, with an average distance of 0.47 cM between adjacent markers. To our knowledge, the integrated map described herein has the best coverage of the potato genome and the highest marker density for tetraploid potato. This work provides a foundation for further quantitative trait loci (QTL) location, map-based gene cloning of important traits and marker-assisted selection (MAS) of potato.


Plants ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 616 ◽  
Author(s):  
Yousoo Choi ◽  
Sunggil Kim ◽  
Jundae Lee

Anthocyanins, the pigmented flavonoids responsible for red and blue colors in horticultural products, promote human health by preventing cancers and lowering the risk of cardiovascular disease. Red onions contain several cyanidin- and peonidin-based anthocyanins. In this study, we constructed a single-nucleotide polymorphism (SNP)-based genetic linkage map in an F2 segregating population derived from a cross between the inbred line ‘SP3B’ (yellow bulb) and the doubled haploid line ‘H6′ (red bulb) to identify quantitative trait loci (QTLs) for total anthocyanin content of onion bulbs using a genotyping-by-sequencing (GBS) analysis based on a reference gene set. A total of 101.9 Gbp of raw sequences were generated using an Illumina HiSeq 2500 system and a total of 1625 SNP loci were identified with the criteria of three minimum depths, lower than 30% missing rate, and more than 5% minor allele frequency. As a result, an onion genetic linkage map consisting of 319 GBS-based SNP loci and 34 high-resolution melting (HRM) markers was constructed with eight linkage groups and a total genetic distance of 881.4 cM. In addition, the linkage groups were assigned to corresponding chromosomes by comparison with the reference genetic map OH1×5225 through marker development based on common transcripts. The analysis revealed one major QTL, qAS7.1, for anthocyanin synthesis and two significant QTLs, qAC4.1 and qAC4.2, for anthocyanin content. The QTL qAS7.1, located on chromosome 7 with a phenotypic variation of 87.61%, may be a dihydroflavonol 4-reductase (DFR) gene that determines whether the bulb color is red or yellow. The QTLs qAC4.1 and qAC4.2 are separately positioned on chromosome 4 with R2 values of 19.43% and 26.28%, respectively. This map and QTL information will contribute to marker development and breeding for high anthocyanin content in bulb onion.


Sign in / Sign up

Export Citation Format

Share Document