scholarly journals Boosting immune response with the invariant chain segments via association with non-peptide binding region of major histocompatibility complex class II molecules

2012 ◽  
Vol 13 (1) ◽  
pp. 55 ◽  
Author(s):  
Fangfang Chen ◽  
Fantao Meng ◽  
Ling Pan ◽  
Fazhi Xu ◽  
Xuelan Liu ◽  
...  
1995 ◽  
Vol 181 (2) ◽  
pp. 677-683 ◽  
Author(s):  
A Sette ◽  
S Southwood ◽  
J Miller ◽  
E Appella

Major histocompatibility complex class II-associated invariant chain (Ii) provides several important functions that regulate class II expression and function. One of these is the ability to inhibit class II peptide loading early in biosynthesis. This allows for efficient class II folding and egress from the endoplasmic reticulum, and protects the class II peptide binding site from loading with peptides before entry into endosomal compartments. The ability of Ii to interact with class II and interfere with peptide loading has been mapped to Ii exon 3, which encodes amino acids 82-107. This same region of Ii has been described as a nested set of class II-associated Ii peptides (CLIPs) that are transiently associated with class II in normal cells and accumulate in human histocompatibility leukocyte antigen-DM-negative cell lines. Currently it is not clear how CLIP and the CLIP region of Ii blocks peptide binding. CLIP may bind directly to the class II peptide binding site, or may bind elsewhere on class II and modulate class II peptide binding allosterically. In this report, we show that CLIP can interact with many different murine and human class II molecules, but that the affinity of this interaction is controlled by polymorphic residues in the class II chains. Likewise, structural changes in CLIP also modulate class II binding in an allele-dependent manner. Finally, the specificity and kinetics of CLIP binding to class II molecule is similar to antigenic peptide binding to class II. These data indicate that CLIP binds to class II in an analogous fashion as conventional antigenic peptides, suggesting that the CLIP segment of Ii may actually occupy the class II peptide binding site.


1997 ◽  
Vol 185 (3) ◽  
pp. 429-438 ◽  
Author(s):  
Guangming Zhong ◽  
Paola Romagnoli ◽  
Ronald N. Germain

Leucine-based signals in the cytoplasmic tail of invariant chain (Ii) control targeting of newly synthesized major histocompatibility complex class II molecules to the endocytic pathway for acquisition of antigenic peptides. Some protein determinants, however, do not require Ii for effective class II presentation, although endocytic processing is still necessary. Here we demonstrate that a dileucine-based signal in the cytoplasmic tail of the class II β chain is critical for this Ii-independent presentation. Elimination or mutation of this signal reduces the rate of re-entry of mature surface class II molecules into the endocytic pathway. Antigen presentation controlled by this signal does not require newly synthesized class II molecules and appears to involve determinants requiring only limited proteolysis for exposure, whereas the opposite is true for Ii-dependent determinants. This demonstrates that related leucine-based trafficking signals in Ii and class II control the functional presentation of protein determinants with distinct processing requirements, suggesting that the peptide binding sites of newly synthesized versus mature class II molecules are made available for antigen binding in distinct endocytic compartments under the control of these homologous cytoplasmic signals. This permits capture of protein fragments produced optimally under distinct conditions of pH and proteolytic activity.


Sign in / Sign up

Export Citation Format

Share Document