scholarly journals An interlocked oscillator model for firing of the mesencephalic dopaminergic neuron.

2010 ◽  
Vol 11 (S1) ◽  
Author(s):  
Joon Ha ◽  
Alexey Kuznetsov
2006 ◽  
Vol 95 (2) ◽  
pp. 932-947 ◽  
Author(s):  
Alexey S. Kuznetsov ◽  
Nancy J. Kopell ◽  
Charles J. Wilson

Dopaminergic neurons of the midbrain fire spontaneously at rates <10/s and ordinarily will not exceed this range even when driven with somatic current injection. When driven at higher rates, these cells undergo spike failure through depolarization block. During spontaneous bursting of dopaminergic neurons in vivo, bursts related to reward expectation in behaving animals, and bursts generated by dendritic application of N-methyl-d-aspartate (NMDA) agonists, transient firing attains rates well above this range. We suggest a way such high-frequency firing may occur in response to dendritic NMDA receptor activation. We have extended the coupled oscillator model of the dopaminergic neuron, which represents the soma and dendrites as electrically coupled compartments with different natural spiking frequencies, by addition of dendritic AMPA (voltage-independent) or NMDA (voltage-dependent) synaptic conductance. Both soma and dendrites contain a simplified version of the calcium-potassium mechanism known to be the mechanism for slow spontaneous oscillation and background firing in dopaminergic cells. The compartments differ only in diameter, and this difference is responsible for the difference in natural frequencies. We show that because of its voltage dependence, NMDA receptor activation acts to amplify the effect on the soma of the high-frequency oscillation of the dendrites, which is normally too weak to exert a large influence on the overall oscillation frequency of the neuron. During the high-frequency oscillations that result, sodium inactivation in the soma is removed rapidly after each action potential by the hyperpolarizing influence of the dendritic calcium-dependent potassium current, preventing depolarization block of the spike mechanism, and allowing high-frequency spiking.


2018 ◽  
Vol 10 (4) ◽  
pp. 1237-1250 ◽  
Author(s):  
Roberto De Gregorio ◽  
Salvatore Pulcrano ◽  
Claudia De Sanctis ◽  
Floriana Volpicelli ◽  
Ezia Guatteo ◽  
...  

2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Shiba Niu ◽  
Weibo Shi ◽  
Yingmin Li ◽  
Shanyong Yi ◽  
Yang Li ◽  
...  

An increasing number of people are in a state of stress due to social and psychological pressures, which may result in mental disorders. Previous studies indicated that mesencephalic dopaminergic neurons are associated with not only reward-related behaviors but also with stress-induced mental disorders. To explore the effect of stress on dopaminergic neuron and potential mechanism, we established stressed rat models of different time durations and observed pathological changes in dopaminergic neurons of the ventral tegmental area (VTA) through HE and thionine staining. Immunohistochemistry coupled with microscopy-based multicolor tissue cytometry (MMTC) was employed to investigate the number changes of dopaminergic neurons. Double immunofluorescence labelling was used to investigate expression changes of endoplasmic reticulum stress (ERS) protein GRP78 and CHOP in dopaminergic neurons. Our results showed that prolonged stress led to pathological alteration in dopaminergic neurons of VTA, such as missing of Nissl bodies and pyknosis in dopaminergic neurons. Immunohistochemistry with MMTC indicated that chronic stress exposure resulted in a significant decrease in dopaminergic neurons. Double immunofluorescence labelling showed that the endoplasmic reticulum stress protein took part in the injury of dopaminergic neurons. Taken together, these results indicated the involvement of ERS in mesencephalic dopaminergic neuron injury induced by stress exposure.


PLoS ONE ◽  
2012 ◽  
Vol 7 (12) ◽  
pp. e52714 ◽  
Author(s):  
Tania Ramos-Moreno ◽  
Javier G. Lendínez ◽  
María José Pino-Barrio ◽  
Araceli del Arco ◽  
Alberto Martínez-Serrano

Sign in / Sign up

Export Citation Format

Share Document