scholarly journals EST sequencing and gene expression profiling of defence-related genes from Persea americana infected with Phytophthora cinnamomi

2011 ◽  
Vol 11 (1) ◽  
pp. 167 ◽  
Author(s):  
Waheed Mahomed ◽  
Noëlani van den Berg
2004 ◽  
Vol 11 (2) ◽  
pp. 295-303 ◽  
Author(s):  
X-C Wang ◽  
S-Y Xu ◽  
X-Y Wu ◽  
H-D Song ◽  
Y-F Mao ◽  
...  

Insulinoma is a clinically common cause of organic hypoglycemia. The prominent characteristic of insulinoma is endogenous hyperinsulinism. Until now, the molecular biology of human insulinoma has been little understood. In this study, gene expression profiling of human insulinoma was established by expressed sequence tag (EST) sequencing and cDNA array. A total of 2063 clones were obtained, of these, 1589 clones were derived from EST sequencing, 975 clones were derived from cDNA array and 501 clones were shared by the two methods. G protein alpha-stimulating activity polypeptide (Gsalpha) and carboxypeptidase E (CPE) were the most highly expressed genes in human insulinoma, as derived by EST sequencing and cDNA array respectively. The genes involved in the protein/insulin secretion pathway were strongly expressed in human insulinoma tissue. Meanwhile, eight full-length cDNAs of novel genes were cloned and sequenced. The results demonstrated the molecular biology of human insulinoma tissue at the level of transcript abundance and validated the efficacy of EST sequencing combined with cDNA array in the construction of gene expression profiling. In conclusion, the predominance of the genes participating in the secretory pathway suggested that regulation of secretion might be a major mechanism by which insulin release is abnormally increased in patients with insulinomas. It was also concluded that overexpression of the Gsalpha gene played an important role in the pathogenesis of insulinoma.


2002 ◽  
Vol 69 ◽  
pp. 135-142 ◽  
Author(s):  
Elena M. Comelli ◽  
Margarida Amado ◽  
Steven R. Head ◽  
James C. Paulson

The development of microarray technology offers the unprecedented possibility of studying the expression of thousands of genes in one experiment. Its exploitation in the glycobiology field will eventually allow the parallel investigation of the expression of many glycosyltransferases, which will ultimately lead to an understanding of the regulation of glycoconjugate synthesis. While numerous gene arrays are available on the market, e.g. the Affymetrix GeneChip® arrays, glycosyltransferases are not adequately represented, which makes comprehensive surveys of their gene expression difficult. This chapter describes the main issues related to the establishment of a custom glycogenes array.


2007 ◽  
Vol 177 (4S) ◽  
pp. 93-93
Author(s):  
Toshiyuki Tsunoda ◽  
Junichi Inocuchi ◽  
Darren Tyson ◽  
Seiji Naito ◽  
David K. Ornstein

2004 ◽  
Vol 171 (4S) ◽  
pp. 198-199 ◽  
Author(s):  
Ximing J. Yang ◽  
Jun Sugimura ◽  
Maria S. Tretiakova ◽  
Bin T. Teh

Sign in / Sign up

Export Citation Format

Share Document