scholarly journals The effects of DNA methylation and histone deacetylase inhibitors upon the human papillomavirus early genes expression in cervical cancer. An in vitro and clinical study

BMC Cancer ◽  
2007 ◽  
Vol 7 (Suppl 1) ◽  
pp. A25 ◽  
Author(s):  
Erik de la Cruz-Hernandez ◽  
Adriana Contreras-Paredes ◽  
Alejandro Mohar ◽  
David Cantú ◽  
Marcela Lizano ◽  
...  
2018 ◽  
Vol 30 (1) ◽  
pp. 153
Author(s):  
A. Taweechaipaisankul ◽  
J.-X. Jin ◽  
S. Lee ◽  
G. A. Kim ◽  
B. C. Lee

The low efficiency of somatic cell nuclear transfer (SCNT) has been attributed mostly to inefficient epigenetic reprogramming. Recently, various histone deacetylase inhibitors (HDACi) were used to improve developmental competence of SCNT embryos in several species. However, limited information is available on the effects of quisinostat (JNJ-26481585, JNJ), a second-generation HDACi with high cellular potency towards Class I and II histone deacetylases. Based on our previous study, among various concentrations, treatment with 100 nM JNJ could improve embryo development into blastocysts compared with the control (23.50 ± 1.30 v. 13.97 ± 1.37; P < 0.05). Thus, in the present study, treatment with 100 nM JNJ was used for further investigation into the relative expression of genes related to pluripotency and reprogramming in order to assess the quality of pre-implantation embryos cultured in media with JNJ using quantitative real-time PCR. Porcine fibroblasts isolated from kidney of adult pigs from passage 6 to 8 were used as nuclear donor cells for SCNT. After SCNT, embryos were cultured with or without 100 nM JNJ during the first 24 h of in vitro culture, and blastocysts from each experimental group were collected and kept at –80°C until analysis. Total RNAs were extracted, and transcribed into cDNA before amplification. Then, the relative expression of development-related (Oct4, Sox2, and Nanog), histone acetylation-related (HDAC1, HDAC2, and HDAC3) and DNA methylation-related (DNMT1, DNMT3a, and DNMT3b) genes between the control and 100 nM JNJ groups were compared. All experiments were repeated 4 times and results were analysed by independent t-test using SPSS 17.0K (SPSS Inc., Chicago, IL, USA). Treatment with 100 nM JNJ showed significant increases in the expression Oct4, Sox2, and Nanog compared with the control (P < 0.05). Moreover, there was significantly lower expression of HDAC1, HDAC2, HDAC3, DNMT1, DNMT3a, and DNMT3b in the 100 nM JNJ treatment than in the control (P < 0.05). These expression results moderately illustrated more active transcriptional factors, stable maintenance of embryonic pluripotency, and lesser activity of histone acetylation and DNA methylation enzymes, enhancing the blastocyst formation rate in the treatment group. In conclusion, we suggest that improvement of the in vitro developmental competence of porcine SCNT embryos might be related to positive regulations of JNJ on the expression levels of genes related to pluripotency and reprogramming. This study was supported by the NRF (#2015R1C1A2A01054373; 2016M3A9B6903410), Research Institute for Veterinary Science and the BK21 PLUS Program.


2020 ◽  
Vol 94 (10) ◽  
Author(s):  
Seiichiro Mori ◽  
Takamasa Takeuchi ◽  
Yoshiyuki Ishii ◽  
Iwao Kukimoto

ABSTRACT The TEAD family of transcription factors requires associating cofactors to induce gene expression. TEAD1 is known to activate the early promoter of human papillomavirus (HPV), but the precise mechanisms of TEAD1-mediated transactivation of the HPV promoter, including its relevant cofactors, remain unexplored. Here, we reveal that VGLL1, a TEAD-interacting cofactor, contributes to HPV early gene expression. Knockdown of VGLL1 and/or TEAD1 led to a decrease in viral early gene expression in human cervical keratinocytes and cervical cancer cell lines. We identified 11 TEAD1 target sites in the HPV16 long control region (LCR) by in vitro DNA pulldown assays; 8 of these sites contributed to the transcriptional activation of the early promoter in luciferase reporter assays. VGLL1 bound to the HPV16 LCR via its interaction with TEAD1 both in vitro and in vivo. Furthermore, introducing HPV16 and HPV18 whole genomes into primary human keratinocytes led to increased levels of VGLL1, due in part to the upregulation of TEADs. These results suggest that multiple VGLL1/TEAD1 complexes are recruited to the LCR to support the efficient transcription of HPV early genes. IMPORTANCE Although a number of transcription factors have been reported to be involved in HPV gene expression, little is known about the cofactors that support HPV transcription. In this study, we demonstrate that the transcriptional cofactor VGLL1 plays a prominent role in HPV early gene expression, dependent on its association with the transcription factor TEAD1. Whereas TEAD1 is ubiquitously expressed in a variety of tissues, VGLL1 displays tissue-specific expression and is implicated in the development and differentiation of epithelial lineage tissues, where HPV gene expression occurs. Our results suggest that VGLL1 may contribute to the epithelial specificity of HPV gene expression, providing new insights into the mechanisms that regulate HPV infection. Further, VGLL1 is also critical for the growth of cervical cancer cells and may represent a novel therapeutic target for HPV-associated cancers.


2003 ◽  
Vol 38 ◽  
pp. 95
Author(s):  
M. Ganslmayer ◽  
C. Herold ◽  
M. Ocker ◽  
S. Zopf ◽  
S. Kareth ◽  
...  

2018 ◽  
Author(s):  
Soo-Hyun Kim ◽  
Richard P. Redvers ◽  
Lap Hing Chi ◽  
Xiawei Ling ◽  
Andrew J. Lucke ◽  
...  

ABSTRACTBreast cancer brain metastasis remains largely incurable. While several mouse models have been developed to investigate the genes and mechanisms regulating breast cancer brain metastasis, these models often lack clinical relevance since they require the use of immune-compromised mice and/or are poorly metastatic to brain from the mammary gland. We describe the development and characterisation of an aggressive brain metastatic variant of the 4T1 syngeneic model (4T1Br4) that spontaneously metastasises to multiple organs, but is selectively more metastatic to the brain from the mammary gland than parental 4T1 tumours. By immunohistochemistry, 4T1Br4 tumours and brain metastases display a triple negative phenotype, consistent with the high propensity of this breast cancer subtype to spread to brain. In vitro assays indicate that 4T1Br4 cells have an enhanced ability to adhere to or migrate across a brain-derived endothelial monolayer and greater invasive response to brain-derived soluble factors compared to 4T1 cells. These properties are likely to contribute to the brain-selectivity of 4T1Br4 tumours. Expression profiling and gene set enrichment analyses demonstrate the clinical relevance of the 4T1Br4 model at the transcriptomic level. Pathway analyses implicate tumour-intrinsic immune regulation and vascular interactions in successful brain colonisation, revealing potential therapeutic targets. Evaluation of two histone deacetylase inhibitors, SB939 and 1179.4b, shows partial efficacy against 4T1Br4 metastasis to brain and other sites in vivo and potent radio-sensitising properties in vitro. The 4T1Br4 model provides a clinically relevant tool for mechanistic studies and to evaluate novel therapies against brain metastasis.SUMMARY STATEMENTWe introduce a new syngeneic mouse model of spontaneous breast cancer brain metastasis, demonstrate its phenotypic, functional and transcriptomic relevance to human TNBC brain metastasis and test novel therapies.


Author(s):  
Victoria M Richon ◽  
Xianbo Zhou ◽  
J.Paul Secrist ◽  
Carlos Cordon-Cardo ◽  
W.Kevin Kelly ◽  
...  

2019 ◽  
Vol 11 (21) ◽  
pp. 2765-2778
Author(s):  
Jie-Huan Zhang ◽  
Madhusoodanan Mottamal ◽  
Hai-Shan Jin ◽  
Shanchun Guo ◽  
Yan Gu ◽  
...  

Aim: Histone deacetylase (HDAC) is an attractive target for antitumor therapy. Therefore, the development of novel HDAC inhibitors is warranted. Materials & methods: A series of HDAC inhibitors based on N-hydroxycinnamamide fragment was designed as the clinically used belinostat analog using amide as the connecting unit. All target compounds were evaluated for their in vitro HDAC inhibitory activities and some selected compounds were tested for their antiproliferative activities. Conclusion: Among them, compound 7e showed an IC50 value of 11.5 nM in inhibiting the HDAC in a pan-HDAC assay, being the most active compound of the series.


2004 ◽  
Vol 10 (10) ◽  
pp. 3396-3400 ◽  
Author(s):  
Andreas Widschwendter ◽  
Conny Gattringer ◽  
Lennart Ivarsson ◽  
Heidi Fiegl ◽  
Alois Schneitter ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document