Human Papillomavirus Early Gene Products and Maintenance of the Transformed State of Cervical Cancer Cells in Vitro

Author(s):  
A. Kleinheinz ◽  
M. von Knebel Doeberitz ◽  
T. P. Cripe ◽  
L. P. Turek ◽  
L. Gissmann
2003 ◽  
Vol 8 (5) ◽  
pp. 762-768 ◽  
Author(s):  
Mitsuo Yoshinouchi ◽  
Taketo Yamada ◽  
Masahiro Kizaki ◽  
Jin Fen ◽  
Takeyoshi Koseki ◽  
...  

2016 ◽  
Vol 94 (5) ◽  
pp. 526-533 ◽  
Author(s):  
Yan Zhao ◽  
Xinyu Wang ◽  
Lei Li ◽  
Changzhong Li

The clinical management of cervical cancer remains a challenge and the development of new treatment strategies merits attention. However, the discovery and development of novel compounds can be a long and labourious process. Drug repositioning may circumvent this process and facilitate the rapid translation of hypothesis-driven science into the clinics. In this work, we show that a FDA-approved antibiotic, doxycycline, effectively targets human papillomavirus (HPV) positive and negative cervical cancer cells in vitro and in vivo. Doxycycline significantly inhibits proliferation of a panel of cervical cancer cell lines. It also induces apoptosis of cervical cancer cells in a time- and dose-dependent manner. In addition, the apoptosis induced by doxycycline is through caspase-dependent pathway. Mechanism studies demonstrate that doxycycline affects oxygen consumption rate, glycolysis, and reduces ATP levels in cervical cancer cells. In HeLa xenograft mouse model, doxycycline significantly inhibits growth of tumour. Our in vitro and in vivo data clearly demonstrate the inhibitory effects of doxycycline on the growth and survival of cervical cancer cells. Our work provides the evidence that doxycycline can be repurposed for the treatment of cervical cancer and targeting energy metabolism may represent a potential therapeutic strategy for cervical cancer.


2021 ◽  
Author(s):  
Qin Wang ◽  
Min Xu ◽  
Tingting Chen ◽  
Jing Chen ◽  
Runjie Zhang ◽  
...  

Abstract Objective: High-risk human papillomavirus (HR-HPV) is the main etiological factor for cervical cancer. Accumulating evidence has suggested that the active role of metabolites in the initiation and progression of cancers. This study was to explore the metabolic profiles of HR-HPV infection and their potential functions in cervical cancer.Methods: Non-targeted metabolomics approach was used to detect metabolic alterations in the plasma obtained from HPV-16 positive (HPV16 (+)), HPV-18 positive (HPV18 (+)) and HPV negative (CTL) individuals, followed by CCK8 experiment to detect the effect of different metabolites on the proliferation of Hela and GH354. A cell migration test then verified significant metabolites on the migration of Hela and GH354. Q RT-qPCR and western blot were used to detect malignant progression related mRNA and protein expression levels of cervical cancer.Results: HR-HPV groups shared 24 dysregulated metabolites (such as amino acids, ceramides, glycerophosphocholines). Further experiments showed ceramide species, including C8 inhibits cervical cancer cells proliferation and migration in vitro. In contrast, C12 significantly enhanced cervical cancer cells proliferation and migration in vitro. Protein and mRNA expressions indicated C8 and C12 were related to the malignant behavior of cervical cancer in vitro. The underlying mechanism demonstrated that C8 intervention inhibited proliferation and migration in cervical cancer cells via the MAPK/JNK signaling pathway, while C12 intervention promoted proliferation and migration in cervical cancer cells via the MAPK/ERK signaling pathway. These findings may contribute to the treatment of HR-HPV-induced cervical cancer by intervening in its initiation and progression.Conclusion: Our study shed some light on how metabolites influenced the relationship between HR-HPV oncogenic capability and metabolic phenotype change and identify species C8 and C12 as critical lipid metabolites that modulate cervical cancer cell’s function.


2021 ◽  
Author(s):  
Huilin Zhang ◽  
Ping He ◽  
Qing Zhou ◽  
Yan Lu ◽  
Bingjian Lu

Abstract BackgroundsCSN5, a member of Cop9 signalosome, is essential for protein neddylation. It has been supposed to serve as an oncogene in some cancers. However, the role of CSN5 has not been investigated in cervical cancer yet.MethodsData from TCGA cohorts and GEO dataset was analyzed to examine the expression profile of CSN5 in cervical cancers. The role of CSN5 on cervical cancer cell proliferation was investigated in cervical cancer cell lines, Siha and Hela, through CSN5 knockdown via CRISPR-CAS9. Western blot was used to detect the effect of CSN5 knockdown and overexpression. CCK8, clone formation assay and cell cycle assay were also employed. Besides, the role CSN5 knockdown in vivo was evaluated by xenograft tumor model. Moreover, MLN4924 was applied in Siha and Hela with CSN5 overexpression.ResultsWe found that downregulation of CSN5 in Siha and Hela cells inhibited cell proliferation in vitro and in vivo, and the inhibitory effects were largely rescued by CSN5 overexpression. Moreover, deletion of CSN5 caused cell cycle arrest rather than inducing apoptosis. Importantly, CSN5 overexpression confers resistance to the anti-cancer effects of MLN4924 (pevonedistat) in cervical cancer cells.ConclusionsOur findings demonstrated that CSN5 functions as an oncogene in cervical cancers and may serve as a potential indicator for predicting the effects of MLN4924 treatment in the future.


2018 ◽  
Vol 18 (1) ◽  
pp. 52-54
Author(s):  
Sothing Vashum ◽  
Rabi Raja Singh I ◽  
Saikat Das ◽  
Mohammed Azharuddin KO ◽  
Prabhakaran Vasudevan

AbstractAimDNA double-strand break (DSB) results in the phosphorylation of the protein, H.2AX histone. In this study, the effect of radiotherapy and chemotherapy on DNA DSB in cervical cancer cells is analysed by the phosphorylation of the protein.MethodsThe cervical cancer cells (HeLa cells) were cultured and exposed to ionising radiation. Radiation sensitivity was measured by clonogenic survival fraction after exposing to ionising radiation. Since the phosphorylation of H.2AX declines with time, the DNA damage was quantified at different time points: 1 hour, 3 hours and 1 week after exposed to the radiation. The analysis of γ-H.2AX was done by Western-blot technique. The protein expression was observed at different dose of radiation and combination of both radiation and paclitaxel.ResultsLow-dose hypersensitivity was observed. By 1 week after radiation at 0·5, 0·8 and 2 Gy, there was no expression of phosphorylated H.2AX. Previous experiments on the expression of phosphorylated H.2AX (γ-H.2AX) in terms of foci analysis was found to peak at 1 hour and subsequently decline with time. In cells treated with the DNA damaging agents, the expression of phosphorylated H.2AX decreases in a dose-dependent manner when treated with radiation alone. However, when combined with paclitaxel, at 0·5 Gy, the expression peaked and reduces at 0·8 Gy and slightly elevated at 2 Gy.FindingsIn this study, the peak phosphorylation was observed at 3 hour post irradiation indicating that DSBs are still left unrepaired.


Tumor Biology ◽  
2016 ◽  
Vol 37 (10) ◽  
pp. 13137-13154 ◽  
Author(s):  
Kanchan Vishnoi ◽  
Sutapa Mahata ◽  
Abhishek Tyagi ◽  
Arvind Pandey ◽  
Gaurav Verma ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document