scholarly journals A TrkB–STAT3–miR-204-5p regulatory circuitry controls proliferation and invasion of endometrial carcinoma cells

2013 ◽  
Vol 12 (1) ◽  
pp. 155 ◽  
Author(s):  
Wei Bao ◽  
Hui-Hui Wang ◽  
Fu-Ju Tian ◽  
Xiao-Ying He ◽  
Mei-Ting Qiu ◽  
...  
Author(s):  
Ichiro Yamamoto ◽  
Toshiaki Tachibana ◽  
Hiroko Maruyama ◽  
Noriyuki Komatsu ◽  
Hiroyuki Kuramoto ◽  
...  

We have paid attention to the alteration of glycosyltransferase in carcinoma cells, because it might be related to the malignancy of the cells. In this connection, localization of β1-4 galactosyl transferase (β1-4 Gal T) in human endometrial carcinoma cells was examined immunocytochemically using two kinds of cell lines, each of which showed different degree of differentiation.An antibody was purified from the rabbit antiserum against the synthetic peptide, IFNRLVFRGMSC (W89) of human β1-4 Gal T coupled with KLH (keyhole limpet hemocyanine) by protein A column and peptide-affinity column chromatography. The anti-W89 serum reacts to the C-terminus of human β 1-4 Gal T and to both membrane-bound and soluble forms of the enzyme. Cell line of well differentiated endometrial adenocarcinoma (I) and that of poorly differentiated endometrial adenocarcinoma (50B) were cultivated respectively in MEM medium containing 15% FCS and 2 mM glutamine for 4 d at 37°C under 5% CO2. The cells were fixed in a mixture of 4% paraformaldehyde and 0.1% glutaraldehyde in 0.1 M Soerensen’s phosphate buffer (pH 7.4) at 4°C for 30 min, washed with PBS, then freezed and thawed. The indirect method of the peroxidase- labeled antibody technique was used for immunocytochemistry of both LM and TEM on the cell lines. The cells were dehydrated in ethanol and embedded in TAAB 812. Ultrathin sections were observed under a TEM, JEM-100S.


2008 ◽  
Vol 14 (22) ◽  
pp. 7251-7259 ◽  
Author(s):  
Norio Yoshida ◽  
Kazuhiko Ino ◽  
Yoshiyuki Ishida ◽  
Hiroaki Kajiyama ◽  
Eiko Yamamoto ◽  
...  

Tumor Biology ◽  
2011 ◽  
Vol 32 (6) ◽  
pp. 1217-1224 ◽  
Author(s):  
Yuncheng Li ◽  
Sulin Zhang ◽  
Zhengang Tang ◽  
Jian Chen ◽  
Weijia Kong

Oncology ◽  
1998 ◽  
Vol 55 (1) ◽  
pp. 35-44 ◽  
Author(s):  
Hiroki Hata ◽  
Mieko Hamano ◽  
Jun Watanabe ◽  
Hiroyuki Kuramoto

2016 ◽  
Vol 242 (1) ◽  
pp. 45-52 ◽  
Author(s):  
Guanghui Cui ◽  
Donglei Liu ◽  
Weihao Li ◽  
Yuhang Li ◽  
Youguang Liang ◽  
...  

Increasing evidence suggests that miR-194 is down-regulated in esophageal squamous cell carcinoma tumor tissue. However, the role and underlying mechanism of miR-194 in esophageal squamous cell carcinoma have not been well defined. We used DIANA, TargetScan and miRanda to perform target prediction analysis and found KDM5B is a potential target of miR-194. Based on these findings, we speculated that miR-194 might play a role in esophageal squamous cell carcinoma development and progression by regulation the expression of KDM5B. We detected the expression of miR-194 and KDM5B by quantitative real-time reverse transcription PCR (qRT-PCR) and Western blot assays, respectively, and found down-regulation of miR-194 and up-regulation of KDM5B existed in esophageal squamous cell carcinoma cell lines. By detecting proliferation, invasion and apoptosis of TE6 and TE14 cells transfected with miR-194 mimics or mimic control, miR-194 was found to inhibit proliferation and invasion and promote apoptosis of esophageal squamous cell carcinoma cells. miR-194 was further verified to regulate proliferation, apoptosis and invasion of esophageal squamous cell carcinoma cells by directly targeting KDM5B. Furthermore, animal studies were performed and showed that overexpression of miR-194 inhibited the growth of esophageal squamous cell carcinoma tumors in vivo. These results confirmed our speculation that miR-194 targets KDM5B to inhibit esophageal squamous cell carcinoma development and progression. These findings offer new clues for esophageal squamous cell carcinoma development and progression and novel potential therapeutic targets for esophageal squamous cell carcinoma.


2017 ◽  
Vol 16 (4) ◽  
pp. 4279-4286 ◽  
Author(s):  
Haitao Song ◽  
Yonghao Nan ◽  
Xinsheng Wang ◽  
Gang Zhang ◽  
Shi Zong ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document