scholarly journals Effect of stearidonic acid-enriched soybean oil on fatty acid profile and metabolic parameters in lean and obese Zucker rats

2013 ◽  
Vol 12 (1) ◽  
pp. 147 ◽  
Author(s):  
John M Casey ◽  
William J Banz ◽  
Elaine S Krul ◽  
Dustie N Butteiger ◽  
Daniel A Goldstein ◽  
...  
2012 ◽  
Vol 26 (S1) ◽  
Author(s):  
Jeremy E Davis ◽  
John M Casey ◽  
Elaine S Krul ◽  
Dustie N Butteiger ◽  
Daniel A Goldstein ◽  
...  

2020 ◽  
Vol 50 (1) ◽  
pp. 47-54
Author(s):  
I De Gasperín ◽  
J.G. Vicente ◽  
J.M. Pinos-Rodríguez ◽  
F Montiel ◽  
R Loeza ◽  
...  

The aim of this research was to determine fatty acid profiles in piglet brain, skin, and muscle, and in the milk of sows fed fat with different saturation grades during gestation and lactation. At 42 days of gestation, 50 multiparous sows were randomly allocated to one of two treatments, namely a diet containing pork lard (n = 25) and a diet containing soybean oil (n = 25). The fats were provided at 3.6% during gestation and at 4% during lactation. The experimental diets were offered through the weaning of the piglets. The fatty acid profile of the milk was determined fourteen days after parturition. At weaning (21 days postpartum) and seven days later, one of the piglets (n = 64) from 16 sows allocated to each treatment was selected at random to determine fatty acid profiles in brain, skin and muscle. Saturated and monounsaturated fatty acids were higher in the diet with pork lard than in that with soybean oil, in which the polyunsaturated fat content was higher. A higher saturation of fatty acids was found in milk from the sows that consumed pork lard, which contained more saturated fatty acids than the milk from sows that consumed soybean oil. The fatty acid profiles in muscle and skin of the piglets were affected by the diet of the sows. However, the fatty acid profile of the piglets’ brains was not affected by the diet of their mothers. Keywords: fat saturation, lard, piglet survival, sow feeding, soybean oil


1989 ◽  
Vol 257 (4) ◽  
pp. R822-R828 ◽  
Author(s):  
M. J. Azain ◽  
J. A. Ontko

These studies were undertaken to further characterize and explain the differences in hepatic fatty acid metabolism between lean and obese Zucker rats. It was shown that the rate of palmitate or octanoate oxidation and the inhibition of palmitate oxidation by malonyl CoA in mitochondria isolated from lean and obese Zucker rats were similar. Cytochrome oxidase activity was similar in lean and obese rat livers. It was found that the addition of cytosol from the obese rat liver inhibited palmitate oxidation by 20-30% in mitochondria isolated from lean or obese rat livers and thus reproduced the conditions observed in the intact cell. Increased concentrations of metabolites such as malonyl CoA and glycerophosphate in the liver of the obese rat are likely contributors to this inhibitory effect. These results are extrapolated to the intact cell and suggest that decreased hepatic fatty acid oxidation in the obese rat can be accounted for by cytosolic influences on the mitochondria. The decreased rate of fatty acid oxidation observed in the intact hepatocyte or perfused liver cannot be explained by a defect in the capacity of mitochondria to oxidize substrate or by a decrease in mitochondrial number in the obese rat liver.


2012 ◽  
Vol 81 (2) ◽  
pp. 159-162 ◽  
Author(s):  
Petra Hudečková ◽  
Lucie Rusníková ◽  
Eva Straková ◽  
Pavel Suchý ◽  
Petr Marada ◽  
...  

The aim of this study was to compare the effect of two different types of oils in diet on the fatty acid profile in the eggs of layers and to include a particular type of oil as a supplement of feeding mixtures for layers in order to support the development of functional foodstuffs. Thirty layers fed a diet containing soybean oil constituted the control group (soybean oil is the most frequently used oil added to feeding mixtures). In the experimental group (thirty layers), soybean oil was replaced with linseed oil at the same amount (3 kg of oil per 100 kg of feeding mixture). Feeding was provided ad libitum for all days of the month. After one month, egg yolks were analysed and the fatty acid profile was compared. Significant differences (P ≤ 0.05) were found in the concentration of myristic acid that belongs to the group of saturated fatty acids. Eggs in the experimental group showed higher concentrations of myristic acid compared to the control group (0.20 g/100 g of fat and 0.18 g/100 g of fat, respectively). Highly significant differences (P ≤ 0.01) were found for heptadecanoic acid but the trend was opposite to that of myristic acid; concentrations of heptadecanoic acid in the experimental group were lower than those in the control group. Highly significant differences (P ≤ 0.01) were found for n-9 monounsaturated fatty acids where egg yolks in eggs from layers fed linseed oil contained higher concentrations of oleic acid, myristoleic acid, and palmitoleic acid. Lower concentrations of n-6 fatty acids (P ≤ 0.01) were found after the addition of linseed oil in eggs. Linseed oil showed a positive effect on n-3 fatty acids (α-linolenic acid), its concentration in the control and experimental group was 0.82 g/100 g of fat and 5.63 g/100 g of fat, respectively. The possibility of influencing the fatty acid profile in eggs is very important for the development of functional foods.


2009 ◽  
Vol 8 (sup2) ◽  
pp. 274-276 ◽  
Author(s):  
Arianna Buccioni ◽  
Mauro Antongiovanni ◽  
Sara Minieri ◽  
Stefano Rapaccini

2000 ◽  
Vol 278 (2) ◽  
pp. R453-R459 ◽  
Author(s):  
J. Anthony Peth ◽  
Tyson R. Kinnick ◽  
Erik B. Youngblood ◽  
Hans J. Tritschler ◽  
Erik J. Henriksen

The purpose of this study was to assess the individual and interactive effects of the antioxidant α-lipoic acid (LPA) and the n-6 essential fatty acid γ-linolenic acid (GLA) on insulin action in insulin-resistant obese Zucker rats. LPA, GLA, and a unique conjugate consisting of equimolar parts of LPA and GLA (LPA-GLA) were administered for 14 days at 10, 30, or 50 mg ⋅ kg body wt− 1 ⋅ day− 1. Whereas LPA was without effect at 10 mg/kg, at 30 and 50 mg/kg it elicited 23% reductions ( P < 0.05) in the glucose-insulin index (the product of glucose and insulin areas under the curve during an oral glucose tolerance test and an index of peripheral insulin action) that were associated with significant increases in insulin-mediated (2 mU/ml) glucose transport activity in isolated epitrochlearis (63–65%) and soleus (33–41%) muscles. GLA at 10 and 30 mg/kg caused 21–25% reductions in the glucose-insulin index and 23–35% improvements in insulin-mediated glucose transport in epitrochlearis muscle. The beneficial effects of GLA disappeared at 50 mg/kg. At 10 and 30 mg/kg, the LPA-GLA conjugate elicited 29 and 38% reductions in the glucose-insulin index. These LPA-GLA-induced improvements in whole body insulin action were accompanied by 28–63 and 38–57% increases in insulin-mediated glucose transport in epitrochlearis and soleus muscles and resulted from the additive effects of LPA and GLA. At 50 mg/kg, the metabolic improvements due to LPA-GLA were substantially reduced. In summary, these results indicate that the conjugate of the antioxidant LPA and the n-6 essential fatty acid GLA elicits significant dose-dependent improvements in whole body and skeletal muscle insulin action on glucose disposal in insulin-resistant obese Zucker rats. Moreover, these actions of LPA-GLA are due to the additive effects of its individual components.


Sign in / Sign up

Export Citation Format

Share Document