scholarly journals HIV-1 transgene expression in rats causes oxidant stress and alveolar epithelial barrier dysfunction

2009 ◽  
Vol 6 (1) ◽  
pp. 1 ◽  
Author(s):  
Coy Lassiter ◽  
Xian Fan ◽  
Pratibha C Joshi ◽  
Barbara A Jacob ◽  
Roy L Sutliff ◽  
...  
2005 ◽  
Vol 289 (3) ◽  
pp. L363-L370 ◽  
Author(s):  
Rabih I. Bechara ◽  
Andres Pelaez ◽  
Andres Palacio ◽  
Pratibha C. Joshi ◽  
C. Michael Hart ◽  
...  

Alcohol abuse markedly increases the risk of sepsis-mediated acute lung injury. In a rat model, ethanol ingestion alone (in the absence of any other stress) causes pulmonary glutathione depletion, increased expression of transforming growth factor-β1 (TGF-β1), and alveolar epithelial barrier dysfunction, even though the lung appears grossly normal. However, during endotoxemia, ethanol-fed rats release more activated TGF-β1 into the alveolar space where it can exacerbate epithelial barrier dysfunction and lung edema. Ethanol ingestion activates the renin-angiotensin system, and angiotensin II is capable of inducing oxidative stress and TGF-β1 expression. We determined that lisinopril, an angiotensin-converting enzyme inhibitor that decreases angiotensin II formation, limited lung glutathione depletion, and treatment with either lisinopril or losartan, a selective angiotensin II type 1 receptor blocker, normalized TGF-β1 expression. The glutathione precursor procysteine also prevented TGF-β1 expression, suggesting that TGF-β1 may be induced indirectly by angiotensin II-mediated oxidative stress and glutathione depletion. Importantly, lisinopril treatment normalized barrier function in alveolar epithelial cell monolayers from ethanol-fed rats, and treatment with either lisinopril or losartan normalized alveolar epithelial barrier function in ethanol-fed rats in vivo, as reflected by lung liquid clearance of an intratracheal saline challenge, even during endotoxemia. In parallel, lisinopril treatment limited TGF-β1 protein release into the alveolar space during endotoxemia. Together, these results suggest that angiotensin II mediates oxidative stress and the consequent TGF-β1 expression and alveolar epithelial barrier dysfunction that characterize the alcoholic lung.


2013 ◽  
Vol 27 (S1) ◽  
Author(s):  
Xian Fan ◽  
Robert Raynor ◽  
Pratibha C Joshi ◽  
Michael Koval ◽  
David M Guidot

2011 ◽  
Vol 301 (2) ◽  
pp. L197-L206 ◽  
Author(s):  
Yuelan Wang ◽  
Richard D. Minshall ◽  
David E. Schwartz ◽  
Guochang Hu

Lung hyperinflation is known to be an important contributing factor in the pathogenesis of ventilator-induced lung injury. Mechanical stretch causes epithelial barrier dysfunction and an increase in alveolar permeability, although the precise mechanisms have not been completely elucidated. p120-catenin is an adherens junction-associated protein that regulates cell-cell adhesion. In this study, we determined the role of p120-catenin in cyclic stretch-induced alveolar epithelial barrier dysfunction. Cultured alveolar epithelial cells (MLE-12) were subjected to uniform cyclic (0.5 Hz) biaxial stretch from 0 to 8 or 20% change in surface area for 0, 1, 2, or 4 h. At the end of the experiments, cells were lysed to determine p120-catenin expression by Western blot analysis. Immunofluorescence staining of p120-catenin and F-actin was performed to assess the integrity of monolayers and interepithelial gap formation. Compared with unstretched control cells, 20% stretch caused a significant loss in p120-catenin expression, which was coupled to interepithelial gap formation. p120-Catenin knockdown with small interfering RNA (siRNA) dose dependently increased stretch-induced gap formation, whereas overexpression of p120-catenin abolished stretch-induced gap formation. Furthermore, pharmacological calpain inhibition or depletion of calpain-1 with a specific siRNA prevented p120-catenin loss and subsequent stretch-induced gap formation. Our findings demonstrate that p120-catenin plays a critical protective role in cyclic stretch-induced alveolar barrier dysfunction, and, thus, maintenance of p120-catenin expression may be a novel therapeutic strategy for the prevention and treatment of ventilator-induced lung injury.


Sign in / Sign up

Export Citation Format

Share Document