Zinc Supplementation Improves Alveolar Epithelial Barrier Dysfunction Induced By Chronic Alcohol Ingestion And/Or HIV-1 Viral Proteins By Activating The Nrf2/ARE Pathway

Author(s):  
Xian Fan ◽  
Pratibha C. Joshi ◽  
Michael Koval ◽  
David M. Guidot
2009 ◽  
Vol 6 (1) ◽  
pp. 1 ◽  
Author(s):  
Coy Lassiter ◽  
Xian Fan ◽  
Pratibha C Joshi ◽  
Barbara A Jacob ◽  
Roy L Sutliff ◽  
...  

2005 ◽  
Vol 289 (3) ◽  
pp. L363-L370 ◽  
Author(s):  
Rabih I. Bechara ◽  
Andres Pelaez ◽  
Andres Palacio ◽  
Pratibha C. Joshi ◽  
C. Michael Hart ◽  
...  

Alcohol abuse markedly increases the risk of sepsis-mediated acute lung injury. In a rat model, ethanol ingestion alone (in the absence of any other stress) causes pulmonary glutathione depletion, increased expression of transforming growth factor-β1 (TGF-β1), and alveolar epithelial barrier dysfunction, even though the lung appears grossly normal. However, during endotoxemia, ethanol-fed rats release more activated TGF-β1 into the alveolar space where it can exacerbate epithelial barrier dysfunction and lung edema. Ethanol ingestion activates the renin-angiotensin system, and angiotensin II is capable of inducing oxidative stress and TGF-β1 expression. We determined that lisinopril, an angiotensin-converting enzyme inhibitor that decreases angiotensin II formation, limited lung glutathione depletion, and treatment with either lisinopril or losartan, a selective angiotensin II type 1 receptor blocker, normalized TGF-β1 expression. The glutathione precursor procysteine also prevented TGF-β1 expression, suggesting that TGF-β1 may be induced indirectly by angiotensin II-mediated oxidative stress and glutathione depletion. Importantly, lisinopril treatment normalized barrier function in alveolar epithelial cell monolayers from ethanol-fed rats, and treatment with either lisinopril or losartan normalized alveolar epithelial barrier function in ethanol-fed rats in vivo, as reflected by lung liquid clearance of an intratracheal saline challenge, even during endotoxemia. In parallel, lisinopril treatment limited TGF-β1 protein release into the alveolar space during endotoxemia. Together, these results suggest that angiotensin II mediates oxidative stress and the consequent TGF-β1 expression and alveolar epithelial barrier dysfunction that characterize the alcoholic lung.


2011 ◽  
Vol 8 (1) ◽  
pp. 30 ◽  
Author(s):  
Caroline R Clary ◽  
Daniel M Guidot ◽  
Margaux A Bratina ◽  
Jeffrey S Otis

2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
Yan Liang ◽  
Samantha M. Yeligar ◽  
Lou Ann S. Brown

Chronic alcohol ingestion increases the risk of developing acute respiratory distress syndrome (ARDS), a severe form of acute lung injury, characterized by alveolar epithelial and endothelial barrier disruption and intense inflammation. Alcohol abuse is also associated with a higher incidence of sepsis or pneumonia resulting in a higher rate of admittance to intensive care, longer inpatient stays, higher healthcare costs, and a 2–4 times greater mortality rate. Chronic alcohol ingestion induced severe oxidative stress associated with increased ROS generation, depletion of the critical antioxidant glutathione (GSH), and oxidation of the thiol/disulfide redox potential in the alveolar epithelial lining fluid and exhaled breath condensate. Across intracellular and extracellular GSH pools in alveolar type II cells and alveolar macrophages, chronic alcohol ingestion consistently induced a 40–60 mV oxidation of GSH/GSSG suggesting that the redox potentials of different alveolar GSH pools are in equilibrium. Alcohol-induced GSH depletion or oxidation was associated with impaired functions of alveolar type II cells and alveolar macrophages but could be reversed by restoring GSH pools in the alveolar lining fluid. The aims of this paper are to address the mechanisms for alcohol-induced GSH depletion and oxidation and the subsequent effects in alveolar barrier integrity, modulation of the immune response, and apoptosis.


Sign in / Sign up

Export Citation Format

Share Document