scholarly journals Repair of astrocytes, blood vessels, and myelin in the injured brain: possible roles of blood monocytes

2013 ◽  
Vol 6 (1) ◽  
pp. 28 ◽  
Author(s):  
Hey-Kyeong Jeong ◽  
Kyung-min Ji ◽  
Jun Kim ◽  
Ilo Jou ◽  
Eun-Hye Joe
Glia ◽  
2020 ◽  
Author(s):  
Jiawei An ◽  
Haijie Yang ◽  
Esther Yang ◽  
Sooyoung Chung ◽  
Dae‐Yong Kim ◽  
...  

2020 ◽  
Author(s):  
Miguel A. Gama Sosa ◽  
Rita De Gasperi ◽  
Gissel M. Perez ◽  
Patrick R. Hof ◽  
Gregory A. Elder

Author(s):  
D. M. DePace

The majority of blood vessels in the superior cervical ganglion possess a continuous endothelium with tight junctions. These same features have been associated with the blood brain barrier of the central nervous system and peripheral nerves. These vessels may perform a barrier function between the capillary circulation and the superior cervical ganglion. The permeability of the blood vessels in the superior cervical ganglion of the rat was tested by intravenous injection of horseradish peroxidase (HRP). Three experimental groups of four animals each were given intravenous HRP (Sigma Type II) in a dosage of.08 to.15 mg/gm body weight in.5 ml of.85% saline. The animals were sacrificed at five, ten or 15 minutes following administration of the tracer. Superior cervical ganglia were quickly removed and fixed by immersion in 2.5% glutaraldehyde in Sorenson's.1M phosphate buffer, pH 7.4. Three control animals received,5ml of saline without HRP. These were sacrificed on the same time schedule. Tissues from experimental and control animals were reacted for peroxidase activity and then processed for routine transmission electron microscopy.


Author(s):  
M.C. Castillo-Jessen ◽  
A. González-Angulo

Information regarding the normal morphology of uterine blood vessels at ultrastructural level in mammals is scarce Electron microscopy studies dealing with endometrial vasculature despite the functional implications due to hormone priming are not available. Light microscopy observations with combined injection of dyes and microradiography along with histochemical studies does not enable us to know the detailed fine structure of the possible various types of blood vessels in this tissue. The present work has been designed to characterize the blood vessels of endometrium of mice as well as the behavior of the endothelium to injection of low molecular weight proteins during the normal estrous cycle in this animal. One hundred and forty female albino mice were sacrificed after intravascular injection of horse radish peroxidase (HRP) at 30 seconds, 5, 15, 30 and 60 minutes.


Author(s):  
James K. Koehler ◽  
Steven G. Reed ◽  
Joao S. Silva

As part of a larger study involving the co-infection of human monocyte cultures with HIV and protozoan parasites, electron microscopic observations were made on the course of HIV replication and infection in these cells. Although several ultrastructural studies of the cytopathology associated with HIV infection have appeared, few studies have shown the details of virus production in “normal,” human monocytes/macrophages, one of the natural targets of the virus, and suspected of being a locus of quiescent virus during its long latent period. In this report, we detail some of the interactions of developing virons with the membranes and organelles of the monocyte host.Peripheral blood monocytes were prepared from buffy coats (Portland Red Cross) by Percoll gradient centrifugation, followed by adherence to cover slips. 90-95% pure monocytes were cultured in RPMI with 5% non-activated human AB serum for four days and infected with 100 TCID50/ml of HIV-1 for four hours, washed and incubated in fresh medium for 14 days.


Author(s):  
K. E. Muse ◽  
D. G. Fischer ◽  
H. S. Koren

Mononuclear phagocytes, a pluripotential cell line, manifest an array of basic extracellular functions. Among these physiological regulatory functions is the expression of spontaneous cytolytic potential against tumor cell targets.The limited observations on human cells, almost exclusively blood monocytes, initially reported limited or a lack of tumoricidal activity in the absence of antibody. More recently, freshly obtained monocytes have been reported to spontaneously impair the biability of tumor target cells in vitro (Harowitz et al., 1979; Montavani et al., 1979; Hammerstrom, 1979). Although the mechanism by which effector cells express cytotoxicity is poorly understood, discrete steps can be distinguished in the process of cell mediated cytotoxicity: recognition and binding of effector to target cells,a lethal-hit stage, and subsequent lysis of the target cell. Other important parameters in monocyte-mediated cytotoxicity include, activated state of the monocyte, effector cell concentrations, and target cell suseptibility. However, limited information is available with regard to the ultrastructural changes accompanying monocyte-mediated cytotoxicity.


Author(s):  
Fred E. Hossler

Preparation of replicas of the complex arrangement of blood vessels in various organs and tissues has been accomplished by infusing low viscosity resins into the vasculature. Subsequent removal of the surrounding tissue by maceration leaves a model of the intricate three-dimensional anatomy of the blood vessels of the tissue not obtainable by any other procedure. When applied with care, the vascular corrosion casting technique can reveal fine details of the microvasculature including endothelial nuclear orientation and distribution (Fig. 1), locations of arteriolar sphincters (Fig. 2), venous valve anatomy (Fig. 3), and vessel size, density, and branching patterns. Because casts faithfully replicate tissue vasculature, they can be used for quantitative measurements of that vasculature. The purpose of this report is to summarize and highlight some quantitative applications of vascular corrosion casting. In each example, casts were prepared by infusing Mercox, a methyl-methacrylate resin, and macerating the tissue with 20% KOH. Casts were either mounted for conventional scanning electron microscopy, or sliced for viewing with a confocal laser microscope.


Author(s):  
A. M. Klinkner ◽  
R. A. Weiss ◽  
A. Kelley ◽  
P. J. Bugelski

Polyinosinic:polycytidylic acid is an inducer of interferon and a macrophage activator. We have found that intratracheal instillation of polyI:C (IT-pI:C) activates rat bronchoalveolar lavage cells (BAL) for a variety of functions. Examination of Giemsa stained, cytocentrifuge preparations showed that IT-pI:C induced a population of BAL not seen in resident BAL. The morphology of these cells suggested that they might be derived from blood monocytes. To test this hypothesis we have examined several populations of macrophages that had been stained for endogenous peroxidase activity as a marker of cells derived from the monocyte-macrophage lineage.Macrophages were obtained from Fischer 344 rats. Peritoneal exudate cells (PEC) were collected by lavage 4 days after i.p. injection of 20 ml 3% thioglycolate. Buffy coat monocytes were separated from venous blood from naive rats.


Author(s):  
R. S. Hannah ◽  
T. H. Rosenquist

Developing blood vessels in the rat central nervous system exhibit several unusual luminal features. Hannah (1975) used high voltage electron microscopy to demonstrate numerous ridges of endothelium, some near junctional complexes. The ridges produced troughs (which may appear as depressions) in the endothelial surface. In some areas ridges extended over the troughs, removing them from direct contact with the luminal surface. At no time were the troughs observed to penetrate the basal laminae. Fingerlike projections also extended into the lumina.To determine whether any chemical specializations accompanied the unusual morphological features of the luminal surface, we added 0.1% Alcian blue (Behnke and Zelander, 1970) to the 3% glutaraldehyde perfusate (cacodylate buffer, pH 7.4). After Alcian blue had reacted with the luminal glycocalyces, the dye was dissociated with MgCl2 via critical electrolyte concentration method of Scott and Dorling (1965). When these methods are applied together, it is possible to differentiate mucopolysaccharides (glycosaminoglycans or GAG) with the electron microscope.


Sign in / Sign up

Export Citation Format

Share Document