Ultrastructural observations of human monocytes infected with HIV-1

Author(s):  
James K. Koehler ◽  
Steven G. Reed ◽  
Joao S. Silva

As part of a larger study involving the co-infection of human monocyte cultures with HIV and protozoan parasites, electron microscopic observations were made on the course of HIV replication and infection in these cells. Although several ultrastructural studies of the cytopathology associated with HIV infection have appeared, few studies have shown the details of virus production in “normal,” human monocytes/macrophages, one of the natural targets of the virus, and suspected of being a locus of quiescent virus during its long latent period. In this report, we detail some of the interactions of developing virons with the membranes and organelles of the monocyte host.Peripheral blood monocytes were prepared from buffy coats (Portland Red Cross) by Percoll gradient centrifugation, followed by adherence to cover slips. 90-95% pure monocytes were cultured in RPMI with 5% non-activated human AB serum for four days and infected with 100 TCID50/ml of HIV-1 for four hours, washed and incubated in fresh medium for 14 days.

Author(s):  
KANCHAN K. MISHRA ◽  
SUMIT BHARADVA ◽  
MEGHNAD G. JOSHI ◽  
ARVIND GULBAKE

Dendritic cells (DCs) play a critical role in the regulation of adaptive immune responses, furthermore they act as a bridge between the innate and the adaptive immune systems they have been ideal candidates for cell-based immunotherapy of cancers and infections in humans. The first reported trial using DCs in 1995, since they have been used in trials all over the world for several of indications, including cancer and human immunodeficiency virus infection. Generally, for in vitro experiments or for DCs vaccination monocyte-derived dendritic cells (moDCs) were generated from purified monocytes that isolated from peripheral blood by density gradient centrifugation. A variety of methods can be used for enrichment of monocytes for generation of clinical-grade DCs. Herein we summarized up to date understanding of systems and inputs used in procedures to differentiate DCs from blood monocytes in vitro.


Blood ◽  
2003 ◽  
Vol 102 (7) ◽  
pp. 2334-2337 ◽  
Author(s):  
Laura Fantuzzi ◽  
Francesca Spadaro ◽  
Giuliana Vallanti ◽  
Irene Canini ◽  
Carlo Ramoni ◽  
...  

Abstract CC chemokine ligand 2 (CCL2) is constitutively expressed at high levels in human peripheral blood monocytes, and its expression is further up-modulated during their differentiation into macrophages as well as in the course of HIV infection. To investigate the role of endogenous CCL2 on HIV replication and macrophage function, CCL2's activity was neutralized by specific antibodies. Infection of monocyte-derived macrophages with laboratory-adapted HIV-1 or primary viral isolates in the continuous presence of anti-CCL2 antibody resulted in significantly lower p24 Gag antigen release with respect to control cultures. Interestingly, CCL2 neutralization did not affect the early steps of the HIV life cycle but resulted in the intracellular accumulation of p24 Gag antigen. Simultaneously, remarkable changes in cell morphology and size occurred in cell cultures maintained in the presence of anti-CCL2 antibody. These results suggest that CCL2 may represent an autocrine factor important for enhancing virion production likely by affecting the macrophage cytoskeleton. (Blood. 2003;102:2334-2337)


2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Elisabeth A. Diget ◽  
Kaja Zuwala ◽  
Randi K. Berg ◽  
Rune R. Laursen ◽  
Stine Søby ◽  
...  

Macrophages play an important role in human immunodeficiency virus (HIV) pathogenesis and contribute to establishment of a viral reservoir responsible for continuous virus production and virus transmission to T cells. In this study, we investigated the differences between various monocyte-derived macrophages (MDMs) generated through different differentiation protocols and evaluated different cellular, immunological, and virological properties. We found that elevated and persistent HIV-1 pWT/BaL replication could be obtained only in MDMs grown in RPMI containing macrophage colony-stimulating factor (M-CSF). Interestingly, this MDM type was also most responsive to toll-like receptor stimulation. By contrast, all MDM types were activated to a comparable extent by intracellular DNA, and the macrophage serum-free medium-(Mac-SFM-)differentiated MDMs responded strongly to membrane fusion through expression of CXCL10. Finally, we found that HIV infection of RPMI/M-CSF-differentiated MDMs induced low-grade expression of two interferon-stimulated genes in some donors. In conclusion, our study demonstrates that the differentiation protocol used greatly influences the ability of MDMs to activate innate immune reactions and support HIV-1 replication. Paradoxically, the data show that the MDMs with the strongest innate immune response were also the most permissive for HIV-1 replication.


Blood ◽  
1966 ◽  
Vol 28 (2) ◽  
pp. 266-279 ◽  
Author(s):  
ALVIN F. WEBER ◽  
DARREL JOEL ◽  
Joyce Smith ◽  
Stephen Frommes

Abstract 1. Ultrastructural studies were made of 400 agranulocytes, each from the thoracic duct effluent of 12 normal Holstein calves of both sexes. 2. Tabular electron microscopic evaluation of the agranulocytes present demonstrated that 89 per cent were lymphocytes, 4.8 per cent plasmacytes, 1.3 per cent reticular lymphocytes, 4 per cent proplasmacytes, and 0.7 per cent mitotic forms of the various cell types enumerated. 3. Mitochondrial tabular studies demonstrated that profile numbers (6.2-8.2) and profile sizes (0.15-0.25 µ2) were similar among cell sections of the five designated cell groups in the calf and the lymphocyte of the human. Monocyte mitochondrial profiles of the human were highly significantly smaller (0.05 µ2) than those of other cells studied. These studies provided added proof that monocytes probably are not present in the thoracic effluent of the calf. 4. Nuclear bodies were found to be present only in lymphocytes. They were present on the average in 12 per cent of thin sections of cells in this class. In contrast to nuclear bodies of other nonblood cells,20 in lymphocytes they were not associated with the nucleolus, were smaller in overall diameter, and often contained practically no electron opaque central portion.


2001 ◽  
Vol 45 (4) ◽  
pp. 1225-1230 ◽  
Author(s):  
Taisei Kanamoto ◽  
Yoshiki Kashiwada ◽  
Kenji Kanbara ◽  
Kazuyo Gotoh ◽  
Manabu Yoshimori ◽  
...  

ABSTRACT Betulinic acid, a triterpenoid isolated from the methyl alcohol extract of the leaves of Syzigium claviflorum, was found to have a potent inhibitory activity against human immunodeficiency virus type 1 (HIV-1). Betulinic acid derivatives were synthesized to enhance the anti-HIV activity. Among the derivatives, 3-O-(3′,3′-dimethylsuccinyl) betulinic acid, designated YK-FH312, showed the highest activity against HIV-induced cytopathic effects in HIV-1-infected MT-4 cells. To determine the step(s) of HIV replication affected by YK-FH312, a syncytium formation inhibition assay in MOLT-4/HIV-1IIIB and MOLT-4 coculture, a multinuclear-activation-of-galactosidase-indicator (MAGI) assay in MAGI-CCR5 cells, electron microscopic observation, and a time-of-addition assay were performed. In the syncytium formation inhibition assay or in the MAGI assay for de novo infection, the compound did not show inhibitory effects against HIV replication. Conversely, no virions were detected in HIV-1-infected cell cultures treated with YK-FH312 either by electron microscopic observation or by viral yield in the supernatant. In accordance with a p24 enzyme-linked immunosorbent assay of culture supernatant in the time-of-addition assay, YK-FH312 inhibited virus expression in the supernatant when it was added 18 h postinfection. However, Western blot analysis of the cells in the time-of-addition assay revealed that the production of viral proteins in the cells was not inhibited completely by YK-FH312. These results suggest that YK-FH312 might affect the step(s) of virion assembly and/or budding of virions, and this is a novel mechanism of action of an anti-HIV compound.


1995 ◽  
Vol 6 (3) ◽  
pp. 187-189 ◽  
Author(s):  
N. Mahmood ◽  
A. Burke ◽  
S. Hussain ◽  
R. M. Anner ◽  
B. M. Anner

A number of metal compounds and their complexes with cysteine and N-acetyl-cysteine (NAC) were tested for their ability to inhibit HIV replication in vitro, specifically in chronically infected H9 cells (which produce virus continuously). Out of seven metal compounds tested, only bismuth nitrate and bismuth sodium tartrate inhibited virus production in chronically infected H9 cells. The complexes made with metals and cysteine or NAC had slightly improved selective indices.


2000 ◽  
Vol 81 (12) ◽  
pp. 2905-2917 ◽  
Author(s):  
Laura Alessandrini ◽  
Anna Claudia Santarcangelo ◽  
Eleonora Olivetta ◽  
Flavia Ferrantelli ◽  
Paola d’Aloja ◽  
...  

Increasing interest has been devoted to the role that monocyte–macrophages play in the pathogenesis of AIDS. The hypothesis of an involvement in AIDS pathogenesis of human/simian immunodeficiency virus (HIV/SIV) Nef also is currently under evaluation by many investigators. The original basis of this hypothesis came from evidence that monkeys infected with a nef-deleted SIV strain failed to develop simian AIDS. Here, we show that treatment of human monocyte-derived macrophages (MDM) with recombinant HIV-1 Nef protein (rNef) induces a strong inhibition of the replication of either macrophage (M-) or dual-tropic HIV-1 strains. Through cytofluorimetric analyses, we detected internalization of FITC-conjugated rNef in MDM as early as 6 h after treatment. Confocal microscope observations demonstrated that the intracellular distribution of internalized rNef was identical to that of endogenously produced Nef. Down-regulation of the CD4 HIV receptor detected upon rNef treatment of MDM suggested that the rNef-induced HIV inhibition occurred at the virus entry step. This deduction was strengthened by the observation that CD4-independent infection was totally insensitive to rNef treatment. The specificity of all observed effects was demonstrated by immunodepletion of rNef. Finally, we showed that the resistance to HIV replication induced by rNef treatment in MDM favours the spread of T-tropic over M-tropic HIV strains in doubly infected CD4+ lymphocyte–MDM co-cultures. We propose that extracellular Nef contributes to AIDS pathogenesis by inducing resistance to M-tropic HIV replication in MDM, thereby facilitating the switching from M- to T-tropic HIV prevalence that correlates frequently with AIDS progression.


Rheumatology ◽  
2019 ◽  
Vol 59 (4) ◽  
pp. 869-878 ◽  
Author(s):  
Lewis C Rodgers ◽  
John Cole ◽  
Kevin M Rattigan ◽  
Michael P Barrett ◽  
Nisha Kurian ◽  
...  

Abstract Objectives Fatty acid oxidation (FAO) and glycolysis have been implicated in immune regulation and activation of macrophages. However, investigation of human monocyte intracellular metabolism in the context of the hypoxic and inflammatory rheumatoid arthritis (RA) synovium is lacking. We hypothesized that exposure of monocytes to the hypoxic and inflammatory RA environment would have a profound impact on their metabolic state, and potential to contribute to disease pathology. Methods Human monocytes were isolated from buffy coats and exposed to hypoxia. Metabolic profiling of monocytes was carried out by LC-MS metabolomics. Inflammatory mediator release after LPS or RA-synovial fluid (RA-SF) stimulation was analysed by ELISA. FAO was inhibited by etomoxir or enhanced with exogenous carnitine supplementation. Transcriptomics of RA blood monocytes and RA-SF macrophages was carried out by microarray. Results Hypoxia exacerbated monocyte-derived CCL20 and IL-1β release in response to LPS, and increased glycolytic intermediates at the expense of carnitines. Modulation of carnitine identified a novel role for FAO in the production of CCL20 in response to LPS. Transcriptional analysis of RA blood monocytes and RA-SF macrophages revealed that fatty acid metabolism was altered and CCL20 increased when monocytes enter the synovial environment. In vitro analysis of monocytes showed that RA-SF increases carnitine abundance and CCL20 production in hypoxia, which was exacerbated by exogenous carnitine. Conclusion This work has revealed a novel inflammatory mechanism in RA that links FAO to CCL20 production in human monocytes, which could subsequently contribute to RA disease pathogenesis by promoting the recruitment of Th17 cells and osteoclastogenesis.


Viruses ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 355 ◽  
Author(s):  
Hironobu Murakami ◽  
Takehiro Suzuki ◽  
Kiyoto Tsuchiya ◽  
Hiroyuki Gatanaga ◽  
Manabu Taura ◽  
...  

Current therapies for human immunodeficiency virus type 1 (HIV-1) do not completely eliminate viral reservoirs in cells, such as macrophages. The HIV-1 accessory protein viral protein R (Vpr) promotes virus production in macrophages, and the maintenance of Vpr is essential for HIV-1 replication in these reservoir cells. We identified two novel Vpr-binding proteins, i.e., protein arginine N-methyltransferases (PRMTs) 5 and 7, using human monocyte-derived macrophages (MDMs). Both proteins found to be important for prevention of Vpr degradation by the proteasome; in the context of PRMT5 and PRMT7 knockdowns, degradation of Vpr could be prevented using a proteasome inhibitor. In MDMs infected with a wild-type strain, knockdown of PRMT5/PRMT7 and low expression of PRMT5 resulted in inefficient virus production like Vpr-deficient strain infections. Thus, our findings suggest that PRMT5 and PRMT7 support HIV-1 replication via maintenance of Vpr protein stability.


1997 ◽  
Vol 272 (5) ◽  
pp. L1025-L1029 ◽  
Author(s):  
M. J. Coffey ◽  
C. Woffendin ◽  
S. M. Phare ◽  
R. M. Strieter ◽  
D. M. Markovitz

Infection with human immunodeficiency virus (HIV)-1 most often leads to the development of acquired immune deficiency syndrome, which may manifest with opportunistic infections, many of which occur in the lung. Mononuclear phagocytes infected by HIV-1, being relatively resistant to its cytopathic effects, potentially act as a reservoir for the virus. The alveolar macrophage (AM), a differentiated lung tissue macrophage, is readily infected by HIV-1, after which the virus becomes relatively dormant. C-C chemokines, secreted by CD8 T lymphocytes and other cells, are known to suppress HIV replication in lymphocytes. In view of this observation, and the relative increase in CD8+ T lymphocytes during HIV-1 disease, particularly in the lung, we hypothesized that C-C chemokines might play a key role in suppressing HIV-1 replication in AM. We examined the effect of the C-C chemokines macrophage inflammatory protein (MIP)-1 alpha, MIP-1 beta, and regulated on activation normal T cell expressed and secreted (RANTES) singly and in combination on HIV-1 replication in peripheral blood monocytes (PBM) and AM infected in vitro. Our findings indicate that RANTES suppresses HIV-1 replication, as measured by reverse transcriptase activity, in PBM (41.3 +/- 15.2% of control, n = 3, P < 0.05) and AM (30.3 +/- 7.8% of control, n = 3, P < 0.05) in a dose-dependent manner. The other C-C chemokines had no significant effect singly (MIP-1 alpha PBM: 64.8 +/- 21.9%; AM: 115.0 +/- 2.4% of control; MIP-1 beta PBM: 68 +/- 19.6; AM: 63.3 +/- 26.2% of control) but modestly decreased HIV replication when incubated in addition to RANTES (24.5 +/- 6.5% of control). These observations suggest that RANTES plays a key role in modulating HIV-1 replication in mononuclear phagocytes in the blood and lung, and this may have therapeutic implications for prevention and/or treatment of HIV disease.


Sign in / Sign up

Export Citation Format

Share Document