scholarly journals MTHFR C677T and postmenopausal breast cancer risk by intakes of one-carbon metabolism nutrients: a nested case-control study

2009 ◽  
Vol 11 (6) ◽  
Author(s):  
Sonia S Maruti ◽  
Cornelia M Ulrich ◽  
Eldon R Jupe ◽  
Emily White
2016 ◽  
Vol 116 (6) ◽  
pp. 961-968 ◽  
Author(s):  
Yu-Feng Du ◽  
Wei-Ping Luo ◽  
Fang-Yu Lin ◽  
Zhen-Qiang Lian ◽  
Xiong-Fei Mo ◽  
...  

AbstractCholine and betaine are essential nutrients involved in one-carbon metabolism and have been hypothesised to affect breast cancer risk. Functional polymorphisms in genes encoding choline-related one-carbon metabolism enzymes, including phosphatidylethanolamine N-methyltransferase (PEMT), choline dehydrogenase (CHDH) and betaine-homocysteine methyltransferase (BHMT), have important roles in choline metabolism and may thus interact with dietary choline and betaine intake to modify breast cancer risk. This study aimed to investigate the interactive effect of polymorphisms in PEMT, BHMT and CHDH genes with choline/betaine intake on breast cancer risk among Chinese women. This hospital-based case–control study consecutively recruited 570 cases with histologically confirmed breast cancer and 576 age-matched (5-year interval) controls. Choline and betaine intakes were assessed by a validated FFQ, and genotyping was conducted for PEMT rs7946, CHDH rs9001 and BHMT rs3733890. OR and 95 % CI were estimated using unconditional logistic regression. Compared with the highest quartile of choline intake, the lowest intake quartile showed a significant increased risk of breast cancer. The SNP PEMT rs7946, CHDH rs9001 and BHMT rs3733890 had no overall association with breast cancer, but a significant risk reduction was observed among postmenopausal women with AA genotype of BHMT rs3733890 (OR 0·49; 95 % CI 0·25, 0·98). Significant interactions were observed between choline intake and SNP PEMT rs7946 (Pinteraction=0·029) and BHMT rs3733890 (Pinteraction=0·006) in relation to breast cancer risk. Our results suggest that SNP PEMT rs7946 and BHMT rs3733890 may interact with choline intake on breast cancer risk.


Author(s):  
Cheng Peng ◽  
Chi Gao ◽  
Donghao Lu ◽  
Bernard A Rosner ◽  
Oana Zeleznik ◽  
...  

ABSTRACT Background Carotenoids represent 1 of few modifiable factors to reduce breast cancer risk. Elucidation of interactions between circulating carotenoids and genetic predispositions or mammographic density (MD) may help inform more effective primary preventive strategies in high-risk populations. Objectives We tested whether women at high risk for breast cancer due to genetic predispositions or high MD would experience meaningful and greater risk reduction from higher circulating levels of carotenoids in a nested case-control study in the Nurses’ Health Studies (NHS and NHSII). Methods This study included 1919 cases and 1695 controls in a nested case-control study in the NHS and NHSII. We assessed both multiplicative and additive interactions. RR reductions and 95% CIs were calculated using unconditional logistic regressions, adjusting for matching factors and breast cancer risk factors. Absolute risk reductions (ARR) were calculated based on Surveillance, Epidemiology, and End Results incidence rates. Results We showed that compared with women at low genetic risk or low MD, those with higher genetic risk scores or high MD had greater ARRs for breast cancer as circulating carotenoid levels increase (additive P-interaction = 0.05). Among women with a high polygenic risk score, those in the highest quartile of circulating carotenoids had a significant ARR (28.6%; 95% CI, 14.8–42.1%) compared to those in the lowest quartile of carotenoids. For women with a high percentage MD (≥50%), circulating carotenoids were associated with a 37.1% ARR (95% CI, 21.7–52.1%) when comparing the highest to the lowest quartiles of circulating carotenoids. Conclusions The inverse associations between circulating carotenoids and breast cancer risk appeared to be more pronounced in high-risk women, as defined by germline genetic makeup or MD.


Sign in / Sign up

Export Citation Format

Share Document