scholarly journals CGRP induces migraine-like symptoms in mice during both the active and inactive phases

2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Anne-Sophie Wattiez ◽  
Olivia J. Gaul ◽  
Adisa Kuburas ◽  
Erik Zorilla ◽  
Jayme S. Waite ◽  
...  

Abstract Background Circadian patterns of migraine attacks have been reported by patients but remain understudied. In animal models, circadian phases are generally not taken into consideration. In particular, rodents are nocturnal animals, yet they are most often tested during their inactive phase during the day. This study aims to test the validity of CGRP-induced behavioral changes in mice by comparing responses during the active and inactive phases. Methods Male and female mice of the outbred CD1 strain were administered vehicle (PBS) or CGRP (0.1 mg/kg, i.p.) to induce migraine-like symptoms. Animals were tested for activity (homecage movement and voluntary wheel running), light aversive behavior, and spontaneous pain at different times of the day and night. Results Peripheral administration of CGRP decreased the activity of mice during the first hour after administration, induced light aversive behavior, and spontaneous pain during that same period of time. Both phenotypes were observed no matter what time of the day or night they were assessed. Conclusions A decrease in wheel activity is an additional clinically relevant phenotype observed in this model, which is reminiscent of the reduction in normal physical activity observed in migraine patients. The ability of peripheral CGRP to induce migraine-like symptoms in mice is independent of the phase of the circadian cycle. Therefore, preclinical assessment of migraine-like phenotypes can likely be done during the more convenient inactive phase of mice.

2019 ◽  
Vol 155 ◽  
pp. 22-30
Author(s):  
Jenna R. Lee ◽  
Melissa A. Tapia ◽  
Valerie N. Weise ◽  
Emily L. Bathe ◽  
Victoria J. Vieira-Potter ◽  
...  

Hypertension ◽  
2021 ◽  
Vol 78 (Suppl_1) ◽  
Author(s):  
Leon J DeLalio ◽  
Sean D Stocker

Renal sensory nerves contribute to hypertension and renal dysfunction in chronic kidney disease. Selective chemokines (e.g., bradykinin or capsaicin) activate renal sensory nerves and produce reflexive efferent sympathetic nerve activity (SNA) and arterial blood pressure (ABP) responses. SNA, ABP, and renal function exhibit circadian patterns; yet the impact of circadian cycle on chemosensitive responses is unknown. We hypothesized that SNA and hemodynamic responses would be greater during the active phrase or nighttime versus the inactive phase or daytime. In Inactin anesthetized rats, simultaneous renal and splanchnic SNA and ABP were measured during intrarenal arterial infusion of capsaicin or bradykinin (0.1 μM - 30.0 μM; 50 μl over 15 s) at nighttime (N; 20:00-04:00; n= 12M, 10F) versus daytime (D; 09:00-16:00; n= 8M, 8F). Baseline mean ABP was significantly elevated during nighttime (N: 104±2 mmHg; D: 97±2 mmHg, p=0.04). Intrarenal capsaicin infusion produced concentration-dependent increases in renal and splanchnic SNA. Renal SNA increased more at nighttime versus daytime at 10 μM (N: 723±136 vs D: 409±79 %; p=0.03) and 30 μM (N: 826±181 vs D: 509±80 %; p=0.03). Similarly, splanchnic SNA was greater during nighttime versus daytime at 10 μM (N: 501±117 vs D: 204±53 %, p=0.03) and 30 μM (N: 537±101 vs D: 295±68 %; p=0.03). However, ABP responses were similar between nighttime versus daytime (30uM: 7±1 vs 6±1 mmHg, respectively). Intrarenal infusion of bradykinin produced concentration-dependent increases in renal and splanchnic SNA. Renal SNA increased more at nighttime versus daytime at 10 μM (N: 1773±216 vs D: 1249±112 %; p=0.01) and 30 μM (N: 2605±263 vs D: 1783±163 %; p=0.001). Similarly, splanchnic SNA was exaggerated at nighttime versus daytime at 0.1 μM (N: 163±65 vs D: 0±0 %; p=0.02), 1.0 μM (N: 566±114 vs D: 184±52 %; p=0.005), 10 μM (N: 1110±193 vs D: 583±87 %; p=0.006) and 30 μM (N: 2008±193 vs D: 1044±162 %; p<0.001). ABP response were similar between nighttime versus daytime at 30 μM (10±2 vs 6±1 mmHg, respectively). Circadian cycle exaggerates sympathoexcitatory responses produced by chemosensitive renal sensory nerve activation.


2020 ◽  
Vol 377 ◽  
pp. 112235
Author(s):  
Dvijen C. Purohit ◽  
Atulya D. Mandyam ◽  
Michael J. Terranova ◽  
Chitra D. Mandyam

1995 ◽  
Vol 269 (4) ◽  
pp. C856-C862 ◽  
Author(s):  
H. Sveistrup ◽  
R. Y. Chan ◽  
B. J. Jasmin

We determined levels of mRNA encoding acetylcholinesterase (AChE) in muscles of rats subjected to chronic enhancement of neuromuscular activation. After 8 wk of voluntary wheel running, extensor digitorum longus (EDL) muscles displayed a 72% increase in total AChE activity as a result of a selective threefold increase in the G4 content. Soleus muscles, on the other hand, exhibited a 30% decrease in A12 while displaying a small (33%) increase in total AChE activity. These enzymatic adaptations were paralleled by increases in the levels of AChE mRNAs in both EDL (32%; P < 0.03) and soleus (42%; P < 0.02) muscles. In addition, compensatory hypertrophy of the plantaris muscle increased total AChE activity by 75%. This change was reflected by an elevation in all AChE molecular forms with A12 (89%) and A8 (179%) showing the most prominent increases. Similar to exercise-trained muscles, hypertrophied plantaris muscles displayed an increase in AChE transcripts (25%; P < 0.04). These results indicate that increases in neuromuscular activity modulate expression of the AChE gene in vivo and suggest the involvement of pretranslational regulatory mechanisms in the adaptive response of AChE to enhanced neuromuscular activation.


2012 ◽  
Vol 19 (8) ◽  
pp. 729-738 ◽  
Author(s):  
Catherine R. Mikus ◽  
Bruno T. Roseguini ◽  
Grace M. Uptergrove ◽  
E. Matthew Morris ◽  
Randy Scott Rector ◽  
...  

2006 ◽  
Vol 38 (Suppl 1) ◽  
pp. S12
Author(s):  
Michael S. Lustgarten ◽  
Young C. Jang ◽  
Wook Song ◽  
Yuhong Liu ◽  
Anson Pierce ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document