scholarly journals High Seebeck Coefficient of Porous Silicon: Study of the Porosity Dependence

2016 ◽  
Vol 11 (1) ◽  
Author(s):  
Katerina Valalaki ◽  
Philippe Benech ◽  
Androula Galiouna Nassiopoulou
2003 ◽  
Vol 793 ◽  
Author(s):  
Y. Amagai ◽  
A. Yamamoto ◽  
C. H. Lee ◽  
H. Takazawa ◽  
T. Noguchi ◽  
...  

ABSTRACTWe report transport properties of polycrystalline TMGa3(TM = Fe and Ru) compounds in the temperature range 313K<T<973K. These compounds exhibit semiconductorlike behavior with relatively high Seebeck coefficient, electrical resistivity, and Hall carrier concentrations at room temperature in the range of 1017- 1018cm−3. Seebeck coefficient measurements reveal that FeGa3isn-type material, while the Seebeck coefficient of RuGa3changes signs rapidly from large positive values to large negative values around 450K. The thermal conductivity of these compounds is estimated to be 3.5Wm−1K−1at room temperature and decreased to 2.5Wm−1K−1for FeGa3and 2.0Wm−1K−1for RuGa3at high temperature. The resulting thermoelectric figure of merit,ZT, at 945K for RuGa3reaches 0.18.


2009 ◽  
Vol 6 (5) ◽  
pp. 993-996 ◽  
Author(s):  
Kojiro Mimura ◽  
Takahiko Ishizu ◽  
Kazuya Yamamoto ◽  
Junta Takasu ◽  
Yuri Yonehira ◽  
...  

2007 ◽  
Vol 1044 ◽  
Author(s):  
Tomohiro Imai ◽  
Tsutomu Iida ◽  
Yuki Miyata ◽  
Takashi Itoh ◽  
Hiroki Funashima ◽  
...  

AbstractSi1-xGex alloys show the high power generating efficiency as a thermoelectric- conversion material. We evaluate the thermoelectric power of the n-type SiGe system on the basis of the first principles calculations. The electronic-band-structure calculation is performed using all-electron full-potential linearized augmented-plane-wave (FLAPW) method within the local density approximation (LDA). The Seebeck coefficient is analyzed by the Bloch-Boltzmann equation. We find that the ordered rhombohedral SiGe has high Seebeck coefficient in comparison with zincblende SiGe. The efficiency of the thermoelectric power in Si1-xGex is gained by the local atomic configuration rather than the Ge concentration.


Materials ◽  
2019 ◽  
Vol 12 (9) ◽  
pp. 1529 ◽  
Author(s):  
Amin Nozariasbmarz ◽  
Jerzy S. Krasinski ◽  
Daryoosh Vashaee

Thermoelectric materials could play a crucial role in the future of wearable electronic devices. They can continuously generate electricity from body heat. For efficient operation in wearable systems, in addition to a high thermoelectric figure of merit, zT, the thermoelectric material must have low thermal conductivity and a high Seebeck coefficient. In this study, we successfully synthesized high-performance nanocomposites of n-type Bi2Te2.7Se0.3, optimized especially for body heat harvesting and power generation applications. Different techniques such as dopant optimization, glass inclusion, microwave radiation in a single mode microwave cavity, and sintering conditions were used to optimize the temperature-dependent thermoelectric properties of Bi2Te2.7Se0.3. The effects of these techniques were studied and compared with each other. A room temperature thermal conductivity as low as 0.65 W/mK and high Seebeck coefficient of −297 μV/K were obtained for a wearable application, while maintaining a high thermoelectric figure of merit, zT, of 0.87 and an average zT of 0.82 over the entire temperature range of 25 °C to 225 °C, which makes the material appropriate for a variety of power generation applications.


Sign in / Sign up

Export Citation Format

Share Document