scholarly journals Nano-Silver Ink of High Conductivity and Low Sintering Temperature for Paper Electronics

2019 ◽  
Vol 14 (1) ◽  
Author(s):  
Lixin Mo ◽  
Zhenxin Guo ◽  
Zhenguo Wang ◽  
Li Yang ◽  
Yi Fang ◽  
...  
Materials ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 5941
Author(s):  
Steve Lien-Chung Hsu ◽  
Yen-Ting Chen ◽  
Meng-Liang Chen ◽  
In-Gann Chen

A silver precursor (silver 2-ethylhexanoate) and silver nanoparticles were synthesized and used to prepare a low sintering temperature nano-silver paste (PM03). We optimized the amount of silver 2-ethylhexanoate added and the sintering temperature to obtain the best performance of the nano-silver paste. The relationship between the microstructures and properties of the paste was studied. The addition of silver 2-ethylhexanoate resulted in less porosity, leading to lower resistivity and higher shear strength. Thermal compression of the paste PM03 at 250 °C with 10 MPa pressure for 30 min was found to be the proper condition for copper-to-copper bonding. The resistivity was (3.50 ± 0.02) × 10−7 Ω∙m, and the shear strength was 57.48 MPa.


2011 ◽  
Vol 391-392 ◽  
pp. 745-748
Author(s):  
Shi Yong Luo ◽  
Juan Chen ◽  
Wen Cai Xu ◽  
Xin Lin Zhang ◽  
Li Xia Huo

A paste with as low as 300°C sintering temperature was prepared by using nano silver particles and nitrocellulose ethyl acetate solution. The rheological and thixotropic behaviors of the typical paste were characterized and their effects on the screen printing ability were analyzed in details. The paste demonstrates a typical shear thinning rheological behavior and thixotropic of pseudoplastic fluid. The apparent viscosity decreased rapidly with the increase of the shear rate. The paste is proper for the manufacturing electrical components at a low sintering temperature as low as 300°C.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Chenfei Zhao ◽  
Jun Wang ◽  
Lini Lu

Purpose In flexible electronics applications, organic inks are mostly used for inkjet printing. Three-dimensional (3 D) printing technology has the advantages of low cost, high speed and good precision in modern electronic printing. The purpose of this study is to solve the high cost of traditional printing and the pollution emissions of organic ink. It is necessary to develop a water-based conductive ink that is easily degradable and can be 3 D printed. A nano-silver ink printed circuit pattern with high precision, high conductivity and good mechanical properties is a promising strategy. Design/methodology/approach The researched nano-silver conductive ink is mainly composed of silver nanoparticles and resin. The effect of adding methyl cellulose on the ink was also explored. A simple 3 D circuit pattern was printed on photographic paper. The line width, line length, line thickness and conductivity of the printed circuit were tested. The influence of sintering temperature and sintering time on pattern resistivity was studied. The relationship between circuit pattern bending performance and electrical conductivity is analyzed. Findings The experimental results show that the ink has the characteristics of low silver content and good environmental protection effect. The printing feasibility of 3 D printing circuit patterns on paper substrates was confirmed. The best printing temperature is 160°C–180°C, and the best sintering time is 30 min. The circuit pattern can be folded 120°, and the cycle is folded more than 60 times. The minimum resistivity of the circuit pattern is 6.07 µΩ·cm. Methyl cellulose can control the viscosity of the ink. The mechanical properties of the pattern have been improved. The printing method of 3 D printing can significantly reduce the sintering time and temperature of the conductive ink. These findings may provide innovation for the flexible electronics industry and pave the way for alternatives to cost-effective solutions. Originality/value In this study, direct ink writing technology was used to print circuit patterns on paper substrates. This process is simple and convenient and can control the thickness of the ink layer. The ink material is nonpolluting to the environment. Nano-silver ink has suitable viscosity and pH value. It can meet the requirements of pneumatic 3 D printers. The method has the characteristics of simple process, fast forming, low cost and high environmental friendliness.


Sign in / Sign up

Export Citation Format

Share Document