scholarly journals OsNBL1, a Multi-Organelle Localized Protein, Plays Essential Roles in Rice Senescence, Disease Resistance, and Salt Tolerance

Rice ◽  
2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Xiaosheng Zhao ◽  
Tianbo Zhang ◽  
Huijing Feng ◽  
Tiancheng Qiu ◽  
Zichao Li ◽  
...  

Abstract Background Plant senescence is a complicated process involving multiple regulations, such as temperature, light, reactive oxygen species (ROS), endogenous hormone levels, and diseases. Although many such genes have been characterized to understand the process of leaf senescence, there still remain many unknowns, and many more genes need to be characterized. Results We identified a rice mutant nbl1 with a premature leaf senescence phenotype. The causative gene, OsNBL1, encodes a small protein with 94 amino acids, which is conserved in monocot, as well as dicot plants. Disruption of OsNBL1 resulted in accelerated dark-induced leaf senescence, accompanied by a reduction in chlorophyll content and up-regulation of several senescence-associated genes. Notably, the nbl1 mutant was more susceptible to rice blast and bacterial blight but more tolerant to sodium chloride. Several salt-induced genes, including HAK1, HAK5, and three SNAC genes, were also up-regulated in the nbl1 mutant. Additionally, the nbl1 mutant was more sensitive to salicylic acid. Plants overexpressing OsNBL1 showed delayed dark-induced senescence, consistent with a higher chlorophyll content compared to wild-type plants. However, the overexpression plants were indistinguishable from the wild-types for resistance to the rice blast disease. OsNBL1 is a multi-organelle localized protein and interacts with OsClpP6, which is associated with senescence. Conclusions We described a novel leaf senescence mutant nbl1 in rice. It is showed that OsNBL1, a multi-organelle localized protein which interacts with a plastidic caseinolytic protease OsClpP6, is essential for controlling leaf senescence, disease resistance, and salt tolerance.

2021 ◽  
Author(s):  
Xingyu An ◽  
Hui Zhang ◽  
Jinlu Li ◽  
Rui Yang ◽  
Qianchun Zeng ◽  
...  

Abstract Background: The molecular mechanism of durable and broad-spectrum resistance to rice blast disease in japonica rice variety is still very little known. Ziyu44, a local japonica rice variety in Yunnan Province of China, has shown durable broad-spectrum blast resistance for more than 30 years, and provides an opportunity for us to explore the molecular basis of broad-spectrum resistance to rice blast in japonica rice variety.Methods and Results: We conducted a comparative study of mycelium growth, aposporium formation, the accumulation of salicylate(SA), jasmonate(JA) and H2O2, the expression of SA- and JA-associated genes between Ziyu44 and susceptible variety Jiangnanxiangnuo (JNXN) upon M. oryzae infection. We found that appressorium formation and invasive hyphae extention were greatly inhibited in Ziyu 44 leaves compared with that in JNXN leaves. Both Ziyu 44 and JNXN plants maintained high levels of baseline SA and did not show increased accumulation of SA after inoculation with M. oryzae, while the levels of baseline JA in Ziyu 44 and JNXN plants were relatively low, and the accumulation of JA exhibited markedly increased in Ziyu 44 plants upon M. oryzae infection. The expression levels of key genes involving JA and SA signaling pathway OsCOI1b, OsNPR1, OsMPK6 as well as pathogenesis-related (PR) genes OsPR1a, OsPR1b and OsPBZ1, were markedly up-regulated in Ziyu44. Conclusions: The level of endogenous JA is critical for synchronous activation of SA and JA signaling pathway, up-regulating PR gene expression and enhancing disease resistance against rice blast in Ziyu44.


2019 ◽  
Vol 20 (2) ◽  
pp. 256 ◽  
Author(s):  
Muhammad Asad ◽  
Shamsu Zakari ◽  
Qian Zhao ◽  
Lujian Zhou ◽  
Yu Ye ◽  
...  

Abiotic stresses trigger premature leaf senescence by affecting some endogenous factors, which is an important limitation for plant growth and grain yield. Among these endogenous factors that regulate leaf senescence, abscisic acid (ABA) works as a link between the oxidase damage of cellular structure and signal molecules responding to abiotic stress during leaf senescence. Considering the importance of ABA, we collect the latest findings related to ABA biosynthesis, ABA signaling, and its inhibitory effect on chloroplast structure destruction, chlorophyll (Chl) degradation, and photosynthesis reduction. Post-translational changes in leaf senescence end with the exhaustion of nutrients, yellowing of leaves, and death of senescent tissues. In this article, we review the literature on the ABA-inducing leaf senescence mechanism in rice and Arabidopsis starting from ABA synthesis, transport, signaling receptors, and catabolism. We also predict the future outcomes of investigations related to other plants. Before changes in translation occur, ABA signaling that mediates the expression of NYC, bZIP, and WRKY transcription factors (TFs) has been investigated to explain the inducing effect on senescence-associated genes. Various factors related to calcium signaling, reactive oxygen species (ROS) production, and protein degradation are elaborated, and research gaps and potential prospects are presented. Examples of gene mutation conferring the delay or induction of leaf senescence are also described, and they may be helpful in understanding the inhibitory effect of abiotic stresses and effective measures to tolerate, minimize, or resist their inducing effect on leaf senescence.


2010 ◽  
Vol 27 (1) ◽  
pp. 129-135 ◽  
Author(s):  
G. Ramkumar ◽  
K. Srinivasarao ◽  
K. Madhan Mohan ◽  
I. Sudarshan ◽  
A. K. P. Sivaranjani ◽  
...  

Author(s):  
Susheel Kumar Sharma ◽  
Devender Sharma ◽  
Ram Prasnna Meena ◽  
Manoj Kumar Yadav ◽  
H. Rajashekara ◽  
...  

Crop Science ◽  
2015 ◽  
Vol 55 (6) ◽  
pp. 2620-2627 ◽  
Author(s):  
Junjie Xing ◽  
Melissa H Jia ◽  
James C. Correll ◽  
Longping Yuan ◽  
Huangfeng Deng ◽  
...  

2019 ◽  
Vol 222 (3) ◽  
pp. 1507-1522 ◽  
Author(s):  
Yan Li ◽  
Xiao‐Long Cao ◽  
Yong Zhu ◽  
Xue‐Mei Yang ◽  
Kai‐Ni Zhang ◽  
...  

2008 ◽  
Vol 69 (3) ◽  
pp. 337-346 ◽  
Author(s):  
Hui Li ◽  
Shan-Yue Zhou ◽  
Wen-Sheng Zhao ◽  
Sheng-Chang Su ◽  
You-Liang Peng

2021 ◽  
Author(s):  
Lili Wang ◽  
Zuobin Ma ◽  
Houxiang Kang ◽  
Shuang Gu ◽  
Zhanna Mukhina ◽  
...  

Abstract Rice blast seriously threatens rice production worldwide. Utilizing the rice blast resistance gene to breed the rice blast resistant varieties is one of the best ways to control rice blast disease. Using a map-based cloning strategy, here, we cloned a novel rice blast resistance gene, Pi65 from the resistant variety GangYu129 (abbreviated GY129, O. sativa japonica ). Overexpression of Pi65 in the susceptible variety LiaoXing1 (abbreviated LX1, O. sativa japonica ) enhanced rice blast resistance, while knockout of Pi65 in GY129 resulted in susceptible to rice blast disease. Pi65 encodes two transmembrane domains, with 15 LRR domains and one serine/threonine protein kinase catalytic domain, conferring resistance to isolates of M. oryzae collected from northeast China. There are sixteen amino acids differences between the Pi65 resistance and susceptible alleles. Compared with the Pi65 resistant allele, the susceptible allele deleted one LRR domain. Pi65 was constitutively expressed in whole plants, and it could be induce expressed in the early stage of M. oryzae infection . Transcriptome analysis revealed that numerous genes associated with disease resistance were specifically upregulated in GY129 24-hour post inoculation (HPI), on the contrary, the photosynthesis-and carbohydrate metabolism-related genes were particularly downregulated 24 HPI, demonstrating that the disease resistance associated genes has been activated in GY129 (carrying Pi65 ) after rice blast fungal infection, and the cellular basal and energy metabolism was inhibited simultaneously. Our study provides genetic resources for improving rice blast resistance as well as enriches the study of rice blast resistance mechanisms.


Sign in / Sign up

Export Citation Format

Share Document