scholarly journals Analysis and comparison of traffic flow models: a new hybrid traffic flow model vs benchmark models

2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Facundo Storani ◽  
Roberta Di Pace ◽  
Francesca Bruno ◽  
Chiara Fiori

Abstract Background This paper compares a hybrid traffic flow model with benchmark macroscopic and microscopic models. The proposed hybrid traffic flow model may be applied considering a mixed traffic flow and is based on the combination of the macroscopic cell transmission model and the microscopic cellular automata. Modelled variables The hybrid model is compared against three microscopic models, namely the Krauß model, the intelligent driver model and the cellular automata, and against two macroscopic models, the Cell Transmission Model and the Cell Transmission Model with dispersion, respectively. To this end, three main applications were considered: (i) a link with a signalised junction at the end, (ii) a signalised artery, and (iii) a grid network with signalised junctions. Results The numerical simulations show that the model provides acceptable results. Especially in terms of travel times, it has similar behaviour to the microscopic model. By contrast, it produces lower values of queue propagation than microscopic models (intrinsically dominated by stochastic phenomena), which are closer to the values shown by the enhanced macroscopic cell transmission model and the cell transmission model with dispersion. The validation of the model regards the analysis of the wave propagation at the boundary region.

2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
Hongzhao Dong ◽  
Shuai Ma ◽  
Mingfei Guo ◽  
Dongxu Liu

To analyze the spreading regularity of the initial traffic congestion, the improved cell transmission model (CTM) is proposed to describe the evolution mechanism of traffic congestion in regional road grid. Ordinary cells and oriented cells are applied to render the crowd roads and their adjacent roads. Therefore the traffic flow could be simulated by these cells. Resorting to the proposed model, the duration of the initial traffic congestion could be predicted and the subsequent secondary congestion could be located. Accordingly, the spatial diffusion of traffic congestion could be estimated. At last, taking a road network region of Hangzhou city as an example, the simulation experiment is implemented to verify the proposed method by PARAMICS software. The result shows that the method could predict the duration of the initial congestion and estimate its spatial diffusion accurately.


2012 ◽  
Vol 54 ◽  
pp. 1350-1359 ◽  
Author(s):  
Öznur Yeldan ◽  
Alberto Colorni ◽  
Alessandro Luè ◽  
Emanuele Rodaro

Author(s):  
Zeyu Shi ◽  
Yangzhou Chen ◽  
Jingyuan Zhan ◽  
Xiangyu Guo ◽  
Shuke An

To describe the dynamics of traffic flow in the urban link accurately, the waves which generate at intersections are adopted as the influencing factors of traffic flow. Based on the urban traffic waves, a wave-oriented variable cell transmission model (WVCTM) is proposed to illustrate the urban traffic flow. In this model, the average density and length are the state variables. The cells are divided by traffic waves. The upstream cell is the influence area of the waves at the upstream intersection, the downstream cell is the influence area of the waves at the downstream intersection, and the rest is the mediate cell. Consistent with the fundamental diagram and the cell division, the traffic states of urban links are divided into six modes. The variation of modes is explained by hybrid automata. Finally, an experiment is designed to verify the feasibility of WVCTM. The data in the experiment come from the actual scene. Compared with the cell transmission model (CTM) and variable-length CTM (VCTM), WVCTM possesses the valuable performance to predict the traffic states. Likewise, it is rational that WVCTM can correctly illustrate the urban traffic flow.


2020 ◽  
Vol 02 (01) ◽  
pp. 01-05
Author(s):  
Afzal Ahmed ◽  
Mir Shabbar Ali ◽  
Toor Ansari

This research calibrates Cell Transmission Model (CTM) for heterogeneous and non-lane disciplined traffic, as observed in Pakistan and some other developing countries by constructing a flow-density fundamental traffic flow diagram. Currently, most of the traffic simulation packages used for such heterogonous and non-lane-disciplined traffic are not calibrated for local traffic conditions and most of the traffic flow models are developed for comparatively less heterogeneous and lane-disciplined traffic. The flow-density fundamental traffic flow diagram is developed based on extensive field data collected from Karachi, Pakistan. The calibrated CTM model is validated by using actual data from another road and it was concluded that CTM is capable of modelling heterogeneous and non-lane disciplined traffic and performed very reasonably. The calibrated CTM will be a useful input for the application of traffic simulation and optimization packages such as TRANSYT, SIGMIX, DISCO, and CTMSIM.


Sign in / Sign up

Export Citation Format

Share Document