scholarly journals Segmental differences in Slc26a3-dependent Cl− absorption and HCO3− secretion in the mouse large intestine in vitro in Ussing chambers

2021 ◽  
Vol 71 (1) ◽  
Author(s):  
Hisayoshi Hayashi ◽  
Hiroki Nagai ◽  
Kou-ichiro Ohba ◽  
Manoocher Soleimani ◽  
Yuichi Suzuki

AbstractThe anion exchanger slc26a3 (DRA), which is mutated in congenital chloride-losing diarrhea, is expressed in the apical membrane of the cecum and middle-distal colon but not in the proximal colon of rodent large intestines. To elucidate the functional roles of DRA, we measured unidirectional 36Cl− and 22Na+ fluxes and HCO3− secretion in vitro in each of these segments using DRA-KO mice. Robust Cl− absorption, which was largely abolished after DRA deficiency, was present in the cecum and middle-distal colon but absent in the proximal colon. Na+ absorption was present in all three segments in both the control and DRA-KO mice. The luminal-Cl−-dependent HCO3− secretions in the cecum and middle-distal colon were abolished in the DRA-KO mice. In conclusion, DRA mediates Cl− absorption and HCO3− secretion in the mouse cecum and middle-distal colon, and may have roles in H2O absorption and luminal acid/base regulation in these segments.

1986 ◽  
Vol 250 (4) ◽  
pp. G475-G483 ◽  
Author(s):  
S. K. Sullivan ◽  
P. L. Smith

Fluxes of K from mucosa to serosa or serosa to mucosa have been examined in stripped preparations of rabbit proximal and distal colon in vitro under short-circuit conditions in Ussing chambers. Results from these studies demonstrate that steady-state radioisotopic fluxes of K are achieved after 90 min and remain constant for at least 2 h. Determination of the K concentration dependence of the serosal-to-mucosal K flux revealed that this flux contains both saturable and nonsaturable components. Addition of ouabain (0.1 mM) abolished the saturable component of the serosal-to-mucosal K flux. The mucosal-to-serosal K flux is a linear function of K concentration between 1 and 20 mM under basal conditions. In paired tissues, serosal-to-mucosal K flux is always greater than mucosal-to-serosal flux under basal conditions resulting in net K secretion. However, addition of barium (2 mM) to the mucosal or serosal bathing solution had no significant effect on either unidirectional or net K fluxes. In addition, mucosal bumetanide (0.1 mM) or removal of Cl from both bathing solutions had no significant effect on unidirectional or net K fluxes. In rabbit distal colon, Cl removal from the bathing solutions significantly reduced serosal-to-mucosal K flux, resulting in net K absorption. These results indicate that rabbit proximal colon like rabbit distal colon actively secretes K. However, unlike distal colon the proximal colon does not possess an active K uptake mechanism at the apical cell membrane.(ABSTRACT TRUNCATED AT 250 WORDS)


1990 ◽  
Vol 258 (3) ◽  
pp. G447-G453 ◽  
Author(s):  
E. V. O'Loughlin ◽  
D. M. Hunt ◽  
D. Kreutzmann

Postnatal changes in adrenal gluco- and mineralocorticoid secretion and colonic sodium and chloride transport were examined. New Zealand White rabbits, age 10-14, 18-22, and 25-30 days, and adult animals (6-10 wk) were studied. Serum cortisol, corticosterone, aldosterone, and mucosal Na(+)-K(+)-ATPase activities were measured in each age group. Transport studies were performed in vitro under short-circuited conditions in distal colon at all age groups and in proximal colon in days 10-14 and 18-22 and in adult animals. Serum glucocorticoids varied little until after day 30 when they rose to adult levels. On the other hand, serum aldosterone levels were two- to threefold higher in days 10-14 and 18-22 animals but fell to adult levels by day 25. In distal colon, amiloride-inhibitable electrogenic Na+ absorption was present at all ages but was significantly greater (P less than 0.01) in days 10-14 (3.8 +/- 0.5 mu eq.cm-2.h-1) and 18-22 (4.2 +/- 0.4) rabbits compared with adults (1.9 +/- 0.4) but not day 25-30 (2.8 +/- 0.5). In proximal colon, Na+ absorption was significantly higher (P less than 0.05) in day 10-14 (1.6 +/- 0.5 mu eq.cm-2.h-1) compared with day 18-22 (-0.2 +/- 0.5) and adults (0.06 +/- 0.5) and was amiloride insensitive. Neither chloride transport nor mucosal Na(+)-K(+)-ATPase demonstrated significant age-related changes in either region of colon. These results indicate that both proximal and distal colonic Na+ transport undergoes postnatal changes. In distal but not proximal colon these changes appear to be regulated by circulating aldosterone probably by increasing apical membrane permeability to Na+.


1994 ◽  
Vol 266 (3) ◽  
pp. G475-G484 ◽  
Author(s):  
J. H. Sellin ◽  
W. P. Dubinsky

Rabbit cecum exhibits electrogenic Na absorption in vitro. However, because this transport process is not inhibited by amiloride nor does it demonstrate saturation kinetics typical of the amiloride-inhibitable Na channel, we considered whether the cecal transporter represented one of a recently described family of nonselective cation conductances or channels (NSCC). Both transepithelial and vesicle studies demonstrated that K, Cs, and Rb were transported via an apical conductance. Electrogenic transport was inhibited by divalent cations including Ca, Mg, and Ba but was unaffected by either lanthanum or gadolinium. Parallel studies in distal colon did not exhibit a similar response to either K substitution or Ba inhibition. Phenamil, verapamil, and nicardipine significantly inhibited the short-circuit current (Isc). stimulated by nominal Ca- and Mg-free conditions. Flux studies demonstrated a correlation between changes in Isc and Na transport. Microelectrode impalement studies suggested that there may be both NSCC and K conductance in the apical membrane. Planar bilayer studies identified a 190-pS cation channel that may correlate with the macroscopic transport properties of this epithelium. These studies are consistent with a model of cecal Na absorption mediated by a NSCC in the apical membrane; this may be the mechanism underlying the distinct epithelial transport characteristics of this intestinal segment.


1989 ◽  
Vol 256 (3) ◽  
pp. F490-F496 ◽  
Author(s):  
E. L. Siga ◽  
R. S. Martin ◽  
C. Ibarra ◽  
D. Veron ◽  
F. Ibarra ◽  
...  

Net colonic K secretion (JKnet) is increased in rats and humans with chronic renal failure (CRF). To study whether transepithelial potential difference (PD), active transport forces and/or luminal K conductance play a role in this adaptation, experiments were performed in the colon of control, K-adapted, and CRF rats. Under basal conditions the PD in vivo in CRF was greater than in controls and not different from K-adapted rats. JKnet was comparable in vivo in CRF and K-adapted rats and was greater than in controls. Amiloride (10 microM) reduced PD and JKnet in K-adapted and CRF rats to levels comparable to controls. Under in vitro short-circuited conditions serosal-to-mucosal K flux (JKs----m) in distal colon was significantly increased in K-adapted and CRF animals compared with control, whereas barium caused a significant reduction in JKs----m in all groups of animals. The barium-sensitive component of K secretion was greater, however, in the two experimental groups (-0.2 +/- 0.02 and -0.2 +/- 0.07 in K-adapted and CRF animals, respectively, vs. -0.08 +/- 0.02 microeq.h-1.cm-2 in controls, P less than 0.05). However, luminal barium failed to completely inhibit the increase in K secretion observed in the experimental groups. These data suggest that an increase in PD that results in a rise in luminal negativity, stimulation of active transport, and an increase in barium-sensitive K channels and barium-insensitive pathways in apical membrane of distal colon participate in the mechanism by which net K secretion is increased in the large intestine of subjects with CRF.


Gut ◽  
1999 ◽  
Vol 44 (2) ◽  
pp. 218-225 ◽  
Author(s):  
J A Hardin ◽  
M H Kimm ◽  
M Wirasinghe ◽  
D G Gall

BackgroundAlthough many studies have investigated macromolecular uptake in the stomach and small intestine, little is known about macromolecular uptake in the colon.AimsTo investigate the mechanisms involved in the transport of large antigenically intact macromolecules across the proximal and distal colonic epithelium in the rabbit.MethodsThe mucosal to serosal movement of bovine serum albumin (BSA) was examined in modified Ussing chambers under short circuited conditions. The mucosal surface was exposed to varying concentrations of BSA, and after a 50 minute equilibration period, the mucosal to serosal flux of immunologically intact BSA was determined by ELISA. Total BSA flux was determined by the transport of radiolabelled 125I-BSA.ResultsIntact BSA transport in proximal and distal colonic tissue showed saturable kinetics. Intact BSA transport in the proximal and distal segment was 7% and 2% of the total 125I-BSA flux respectively. Immunologically intact BSA transport in the distal segment was significantly less than that in the proximal segment. Intact BSA transport in the proximal colon was significantly reduced following treatment with sodium fluoride, colchicine, and tetrodotoxin. Cholinergic blockade had no effect on the uptake of intact BSA.ConclusionThe findings indicate that the transport of intact macromolecules across the proximal and distal large intestine is a saturable process. Further, intact BSA transport in the proximal colon is an energy dependent process that utilises microtubules and is regulated by the enteric nervous system.


1990 ◽  
Vol 259 (1) ◽  
pp. G62-G69 ◽  
Author(s):  
L. L. Clarke ◽  
R. A. Argenzio

In contrast to in vivo findings, the equine proximal colon fails to demonstrate significant net absorption of Na+ and Cl- under in vitro conditions. The present study was undertaken to determine if endogenous prostanoids are responsible for this apparent lack of ion transport. Proximal colonic tissues from ponies were preincubated in either normal Ringer solution or in Ringer containing 1 microM indomethacin and studied in Ussing chambers containing these solutions. Untreated colonic mucosa demonstrated negligible Na(+)-Cl- absorption in the basal state. In contrast, indomethacin-treated colon significantly absorbed Na+ and Cl-, primarily as the result of an equivalent increase in the mucosal-to-serosal flux of these ions. Preincubation of proximal colon in 0.1 mM ibuprofen-treated Ringer yielded similar results. Treatment of indomethacin colon with 1 mM mucosal amiloride eliminated net Na(+)-Cl- absorption without affecting the short-circuit current (Isc). The Isc in control tissue was significantly greater than in indomethacin-treated tissue and was reduced by 0.1 mM serosal furosemide. Serosal addition of 0.1 microM prostaglandin E2 or 10 mM serosal plus mucosal theophylline to indomethacin-treated tissues abolished net Na(+)-Cl- absorption and increased the Isc to levels indistinguishable from control. In contrast, control tissues were essentially unaffected by these secretagogues. These findings indicated that Na(+)-Cl- absorption in equine proximal colon was electroneutral (possibly involving Na(+)-H+ exchange) and that the tissue was capable of electrogenic Cl- secretion. However, under the in vitro conditions, basal ion transport was dominated by endogenous prostanoids that abolished Na(+)-Cl- absorption and elicited near-maximal electrogenic Cl- secretion.


1994 ◽  
Vol 266 (4) ◽  
pp. F528-F535 ◽  
Author(s):  
C. Emmons ◽  
J. B. Stokes

HCO3- secretion by cortical collecting duct (CCD) occurs via beta-intercalated cells. In vitro CCD HCO3- secretion is modulated by both the in vivo acid-base status of the animal and by adenosine 3',5'-cyclic monophosphate (cAMP). To investigate the mechanism of cAMP-induced HCO3- secretion, we measured intracellular pH (pHi) of individual beta-intercalated cells of CCDs dissected from alkali-loaded rabbits perfused in vitro. beta-Intercalated cells were identified by demonstrating the presence of an apical anion exchanger (cell alkalinization in response to removal of lumen Cl-). After 180 min of perfusion to permit decrease of endogenous cAMP, acute addition of 0.1 mM 8-bromo-cAMP or 1 microM isoproterenol to the bath caused a transient cellular alkalinization (> 0.20 pH units). In the symmetrical absence of either Na+, HCO3-, or Cl-, cAMP produced no change in pHi. Basolateral dihydrogen 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (0.1 mM) for 15 min before cAMP addition also prevented this alkalinization. In contrast to the response of cells from alkali-loaded rabbits, addition of basolateral cAMP to CCDs dissected from normal rabbits resulted in an acidification of beta-intercalated cells (approximately 0.20 pH units). The present studies demonstrate the importance of the in vivo acid-base status of the animal in the regulation of CCD HCO3- secretion by beta-intercalated cells. The results identify the possible existence of a previously unrecognized Na(+)-dependent Cl-/HCO3- exchanger on the basolateral membrane of beta-intercalated cells in alkali-loaded rabbits.


1972 ◽  
Vol 130 (3) ◽  
pp. 785-790 ◽  
Author(s):  
S. J. Henning ◽  
F. J. R. Hird

1. When studied in vitro, tissue from the caecum and the proximal colon of rabbits converted butyrate into ketone bodies. The conversion was similar to that observed with liver slices. The ketogenic activity was associated with the mucosa rather than the muscle of the gut wall and, in the colon, diminished as the distance from the caecal–colonic junction increased. 2. Tissue from the wall of the ileum, caecum, proximal colon and distal colon was also shown to metabolize [1-14C]butyrate to carbon dioxide. 3. Enzyme assays showed that in both liver tissue and caecal mucosa the activity of hydroxymethylglutaryl-CoA synthase was more than ten times that of acetoacetyl-CoA deacylase. Labelling experiments in vitro gave confirmation of the hydroxymethylglutaryl-CoA pathway. 4. The significance of the conversion of butyrate into ketone bodies is discussed.


2004 ◽  
Vol 287 (1) ◽  
pp. F57-F63 ◽  
Author(s):  
Bruns A. Watts ◽  
David W. Good

Absorption of HCO3− in the medullary thick ascending limb (MTAL) is mediated by apical membrane Na+/H+ exchange. The identity and function of other apical acid-base transporters in this segment have not been defined. The present study was designed to examine apical membrane HCO3−/OH−/H+ transport pathways in the rat MTAL and to determine their role in transepithelial HCO3− absorption. MTALs were perfused in vitro in Na+- and Cl−-free solutions containing 25 mM HCO3−, 5% CO2. Lumen addition of either 120 mM Cl− or 50 mM Na+ (50 μM EIPA present) had no effect on intracellular pH (pHi). Lumen Cl− addition also had no effect on pHi in the presence of 145 mM Na+ or in the nominal absence of HCO3−/CO2. Thus there was no evidence for apical Cl−/HCO3− (OH−) exchange, Na+-dependent Cl−/HCO3− exchange, or Na+-HCO3− cotransport. In contrast, in tubules studied in Na+- and Cl−-free solutions containing 25 mM HCO3−, 5% CO2 and 120 mM K+, removal of luminal K+ induced a rapid and pronounced decrease in pHi (ΔpHi = 0.56 ± 0.06 pH U). pHi recovered following lumen K+ readdition. The initial rate of net base efflux induced by lumen K+ removal was decreased 85% at the same pHi in the nominal absence of HCO3−/CO2, indicating a dependence on HCO3−/CO2 and arguing against apical K+/H+ exchange. A combination of the apical K+ channel blockers quinidine (0.1 mM) and glybenclamide (0.25 mM) had no effect on the lumen K+-induced pHi changes, arguing against electrically coupled K+ and HCO3− conductances. The effect of lumen K+ on pHi was inhibited by 1 mM H2DIDS. In addition, lumen addition of DIDS increased transepithelial HCO3− absorption from 10.7 ± 0.7 to 14.9 ± 0.7 pmol·min−1·mm−1 ( P < 0.001) and increased pHi slightly in MTAL studied in physiological solutions (25 mM HCO3− and 4 mM K+). Lumen DIDS stimulated HCO3− absorption in the absence and presence of furosemide. These results are consistent with an apical membrane K+-dependent HCO3− transport pathway that mediates coupled transfer of K+ and HCO3− from cell to lumen in the MTAL. This mechanism, possibly an apical K+-HCO3− cotransporter, functions in parallel with apical Na+/H+ exchange and opposes transepithelial HCO3− absorption.


1986 ◽  
Vol 251 (4) ◽  
pp. G436-G445 ◽  
Author(s):  
S. K. Sullivan ◽  
P. L. Smith

Stripped segments of proximal colon (1-6 cm distal to the ampulla caecalis coli) were studied in vitro in Ussing chambers under short-circuit conditions using the pH-stat technique. With glucose and HCO3-CO2 present in the serosal bathing solution only, proximal colon alkalinizes the luminal bathing solution at a rate of 2.1 +/- 0.2 mu eq X h-1 X cm-2 (n = 36). With HCO3-CO2 present in the luminal bathing solution alone, proximal colon does not significantly acidify or alkalinize the serosal bathing solution. Addition of glucose (10 mM) to the luminal bathing solution abolished luminal alkalinization. Removal of HCO3 and CO2 from the serosal bathing solution or replacement of O2 with N2 also abolished luminal alkalinization. Acetazolamide (0.1 mM) added to both bathing solutions did not alter the rate of luminal alkalinization. Ion-replacement studies revealed that the alkalinization process was highly dependent on the presence of Na in the bathing solutions and much less dependent on the presence of Cl. Furthermore, ouabain (0.1 mM) significantly reduced luminal alkalinization. As in rabbit ileum, serosal epinephrine (0.1 mM) did not alter luminal alkalinization but increased serosal alkalinization by a Na-dependent mechanism. These results suggest that luminal alkalinization results from a Na-dependent, active transcellular HCO3 transport process and that a Na-dependent HCO3 absorptive process is activated by adrenergic stimuli.


Sign in / Sign up

Export Citation Format

Share Document