scholarly journals EDLm6APred: ensemble deep learning approach for mRNA m6A site prediction

2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Lin Zhang ◽  
Gangshen Li ◽  
Xiuyu Li ◽  
Honglei Wang ◽  
Shutao Chen ◽  
...  

Abstract Background As a common and abundant RNA methylation modification, N6-methyladenosine (m6A) is widely spread in various species' transcriptomes, and it is closely related to the occurrence and development of various life processes and diseases. Thus, accurate identification of m6A methylation sites has become a hot topic. Most biological methods rely on high-throughput sequencing technology, which places great demands on the sequencing library preparation and data analysis. Thus, various machine learning methods have been proposed to extract various types of features based on sequences, then occupied conventional classifiers, such as SVM, RF, etc., for m6A methylation site identification. However, the identification performance relies heavily on the extracted features, which still need to be improved. Results This paper mainly studies feature extraction and classification of m6A methylation sites in a natural language processing way, which manages to organically integrate the feature extraction and classification simultaneously, with consideration of upstream and downstream information of m6A sites. One-hot, RNA word embedding, and Word2vec are adopted to depict sites from the perspectives of the base as well as its upstream and downstream sequence. The BiLSTM model, a well-known sequence model, was then constructed to discriminate the sequences with potential m6A sites. Since the above-mentioned three feature extraction methods focus on different perspectives of m6A sites, an ensemble deep learning predictor (EDLm6APred) was finally constructed for m6A site prediction. Experimental results on human and mouse data sets show that EDLm6APred outperforms the other single ones, indicating that base, upstream, and downstream information are all essential for m6A site detection. Compared with the existing m6A methylation site prediction models without genomic features, EDLm6APred obtains 86.6% of the area under receiver operating curve on the human data sets, indicating the effectiveness of sequential modeling on RNA. To maximize user convenience, a webserver was developed as an implementation of EDLm6APred and made publicly available at www.xjtlu.edu.cn/biologicalsciences/EDLm6APred. Conclusions Our proposed EDLm6APred method is a reliable predictor for m6A methylation sites.

2021 ◽  
Author(s):  
Aditya Nagori ◽  
Anushtha Kalia ◽  
Arjun Sharma ◽  
Pradeep Singh ◽  
Harsh Bandhey ◽  
...  

Shock is a major killer in the ICU and machine learning based early predictions can potentially save lives. Generalization across age and geographical context is an unaddressed challenge. In this retrospective observational study, we built real-time shock prediction models generalized across age groups and continents. More than 1.5 million patient-hours of novel data from a pediatric ICU in New Delhi and 5 million patient-hours from the adult ICU MIMIC database were used to build models. We achieved model generalization through a novel fractal deep-learning approach and predicted shock up to 12 hours in advance. Our deep learning models showed a receiver operating curve (AUROC) drop from 78% (95%CI, 73-83) on MIMIC data to 66% (95%CI, 54-78) on New Delhi data, outperforming standard machine learning by nearly a 10% gap. Therefore, better representations and deep learning can partly address the generalizability-gap of ICU prediction models trained across geographies. Our data and algorithms are publicly available as a pre-configured docker environment at https://github.com/SAFE-ICU/ShoQPred.


2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Yan Wang ◽  
Hao Zhang ◽  
Zhanliang Sang ◽  
Lingwei Xu ◽  
Conghui Cao ◽  
...  

Automatic modulation recognition has successfully used various machine learning methods and achieved certain results. As a subarea of machine learning, deep learning has made great progress in recent years and has made remarkable progress in the field of image and language processing. Deep learning requires a large amount of data support. As a communication field with a large amount of data, there is an inherent advantage of applying deep learning. However, the extensive application of deep learning in the field of communication has not yet been fully developed, especially in underwater acoustic communication. In this paper, we mainly discuss the modulation recognition process which is an important part of communication process by using the deep learning method. Different from the common machine learning methods that require feature extraction, the deep learning method does not require feature extraction and obtains more effects than common machine learning.


2021 ◽  
Author(s):  
KOUSHIK DEB

Character Computing consists of not only personality trait recognition, but also correlation among these traits. Tons of research has been conducted in this area. Various factors like demographics, sentiment, gender, LIWC, and others have been taken into account in order to understand human personality. In this paper, we have concentrated on the factors that could be obtained from available data using Natural Language Processing. It has been observed that the most successful personality trait prediction models are highly dependent on NLP techniques. Researchers across the globe have used different kinds of machine learning and deep learning techniques to automate this process. Different combinations of factors lead the research in different directions. We have presented a comparative study among those experiments and tried to derive a direction for future development.


2020 ◽  
Vol 8 (3) ◽  
pp. 234-238
Author(s):  
Nur Choiriyati ◽  
Yandra Arkeman ◽  
Wisnu Ananta Kusuma

An open challenge in bioinformatics is the analysis of the sequenced metagenomes from the various environments. Several studies demonstrated bacteria classification at the genus level using k-mers as feature extraction where the highest value of k gives better accuracy but it is costly in terms of computational resources and computational time. Spaced k-mers method was used to extract the feature of the sequence using 111 1111 10001 where 1 was a match and 0 was the condition that could be a match or did not match. Currently, deep learning provides the best solutions to many problems in image recognition, speech recognition, and natural language processing. In this research, two different deep learning architectures, namely Deep Neural Network (DNN) and Convolutional Neural Network (CNN), trained to approach the taxonomic classification of metagenome data and spaced k-mers method for feature extraction. The result showed the DNN classifier reached 90.89 % and the CNN classifier reached 88.89 % accuracy at the genus level taxonomy.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e11262
Author(s):  
Guobin Li ◽  
Xiuquan Du ◽  
Xinlu Li ◽  
Le Zou ◽  
Guanhong Zhang ◽  
...  

DNA-binding proteins (DBPs) play pivotal roles in many biological functions such as alternative splicing, RNA editing, and methylation. Many traditional machine learning (ML) methods and deep learning (DL) methods have been proposed to predict DBPs. However, these methods either rely on manual feature extraction or fail to capture long-term dependencies in the DNA sequence. In this paper, we propose a method, called PDBP-Fusion, to identify DBPs based on the fusion of local features and long-term dependencies only from primary sequences. We utilize convolutional neural network (CNN) to learn local features and use bi-directional long-short term memory network (Bi-LSTM) to capture critical long-term dependencies in context. Besides, we perform feature extraction, model training, and model prediction simultaneously. The PDBP-Fusion approach can predict DBPs with 86.45% sensitivity, 79.13% specificity, 82.81% accuracy, and 0.661 MCC on the PDB14189 benchmark dataset. The MCC of our proposed methods has been increased by at least 9.1% compared to other advanced prediction models. Moreover, the PDBP-Fusion also gets superior performance and model robustness on the PDB2272 independent dataset. It demonstrates that the PDBP-Fusion can be used to predict DBPs from sequences accurately and effectively; the online server is at http://119.45.144.26:8080/PDBP-Fusion/.


Mathematics ◽  
2020 ◽  
Vol 8 (9) ◽  
pp. 1606
Author(s):  
Daniela Onita ◽  
Adriana Birlutiu ◽  
Liviu P. Dinu

Images and text represent types of content that are used together for conveying a message. The process of mapping images to text can provide very useful information and can be included in many applications from the medical domain, applications for blind people, social networking, etc. In this paper, we investigate an approach for mapping images to text using a Kernel Ridge Regression model. We considered two types of features: simple RGB pixel-value features and image features extracted with deep-learning approaches. We investigated several neural network architectures for image feature extraction: VGG16, Inception V3, ResNet50, Xception. The experimental evaluation was performed on three data sets from different domains. The texts associated with images represent objective descriptions for two of the three data sets and subjective descriptions for the other data set. The experimental results show that the more complex deep-learning approaches that were used for feature extraction perform better than simple RGB pixel-value approaches. Moreover, the ResNet50 network architecture performs best in comparison to the other three deep network architectures considered for extracting image features. The model error obtained using the ResNet50 network is less by approx. 0.30 than other neural network architectures. We extracted natural language descriptors of images and we made a comparison between original and generated descriptive words. Furthermore, we investigated if there is a difference in performance between the type of text associated with the images: subjective or objective. The proposed model generated more similar descriptions to the original ones for the data set containing objective descriptions whose vocabulary is simpler, bigger and clearer.


2021 ◽  
Author(s):  
Alessandra Toniato ◽  
Philippe Schwaller ◽  
Antonio Cardinale ◽  
Joppe Geluykens ◽  
Teodoro Laino

<p>Existing deep learning models applied to reaction prediction in organic chemistry can reach high levels of accuracy (> 90% for Natural Language Processing-based ones).</p><p>With no chemical knowledge embedded than the information learnt from reaction data, the quality of the data sets plays a crucial role in the performance of the prediction models. While human curation is prohibitively expensive, the need for unaided approaches to remove chemically incorrect entries from existing data sets is essential to improve artificial intelligence models' performance in synthetic chemistry tasks. Here we propose a machine learning-based, unassisted approach to remove chemically wrong entries from chemical reaction collections. We applied this method to the collection of chemical reactions Pistachio and to an open data set, both extracted from USPTO (United States Patent Office) patents. Our results show an improved prediction quality for models trained on the cleaned and balanced data sets. For the retrosynthetic models, the round-trip accuracy metric grows by 13 percentage points and the value of</p><p>the cumulative Jensen Shannon divergence decreases by 30% compared to its original record. The coverage remains high with 97%, and the value of the class-diversity is not affected by the cleaning. The proposed strategy is the first unassisted rule-free technique to address automatic noise reduction in chemical data sets.</p>


2021 ◽  
Author(s):  
Alycia Noel Carey ◽  
William Baker ◽  
Jason B. Colditz ◽  
Huy Mai ◽  
Shyam Visweswaran ◽  
...  

BACKGROUND Twitter provides a valuable platform for the surveillance and monitoring of public health topics; however, manually categorizing large quantities of Twitter data is labor intensive and presents barriers to identify major trends and sentiments. Additionally, while machine and deep learning approaches have been proposed with high accuracy, they require large, annotated data sets. Public pre-trained deep learning classification models, such as BERTweet, produce higher quality models while using smaller annotated training sets. OBJECTIVE This study aims to derive and evaluate a pre-trained deep learning model based on BERTweet that can identify tweets relevant to vaping, tweets (related to vaping) of commercial nature, and tweets with pro-vape sentiment. Additionally, the performance of the BERTweet classifier will be compared against a long short-term memory (LSTM) model to show the improvements a pre-trained model has over traditional deep learning approaches. METHODS Twitter data were collected from August – October 2019 using vaping related search terms. From this set, a random subsample of 2,401 English tweets was manually annotated for relevance (vaping related or not), commercial nature (commercial or not), and sentiment (positive, negative, neutral). Using the annotated data, three separate classifiers were built using BERTweet with the default parameters defined by the Simple Transformer API. Each model was trained for 20 iterations and evaluated with a random split of the annotate tweets, reserving 10% of tweets for evaluations. RESULTS The relevance, commercial, and sentiment classifiers achieved an area under the receiver operating characteristic curve (AUROC) of 94.5%, 99.3%, and 81.7%, respectively. Additionally, the weighted F1 scores of each were 97.6%, 99.0%, and 86.1%. We found that BERTweet outperformed the LSTM model in classification of all categories. CONCLUSIONS Large, open-source deep learning classifiers, such as BERTweet, can provide researchers the ability to reliably determine if tweets are relevant to vaping, include commercial content, and include positive, negative, or neutral content about vaping with a higher accuracy than traditional Natural Language Processing deep learning models. Such enhancement to the utilization of Twitter data can allow for faster exploration and dissemination of time-sensitive data than traditional methodologies (e.g., surveys, polling research).


2021 ◽  
Vol 16 ◽  
Author(s):  
Brahim Matougui ◽  
Abdelbasset Boukelia ◽  
Hacene Belhadef ◽  
Clovis Galiez ◽  
Mohamed Batouche

Background: Metagenomics is the study of genomic content in mass from an environment of interest such as the human gut or soil. Taxonomy is one of the most important fields of metagenomics, which is the science of defining and naming groups of microbial organisms that share the same characteristics. The problem of taxonomy classification is the identification and quantification of microbial species or higher-level taxa sampled by high throughput sequencing. Objective: Although many methods exist to deal with the taxonomic classification problem, assignment to low taxonomic ranks remains an important challenge for binning methods as is scalability to Gb-sized datasets generated with deep sequencing techniques. Methods: In this paper, we introduce NLP-MeTaxa, a novel composition-based method for taxonomic binning, which relies on the use of words embeddings and deep learning architecture. The new proposed approach is word-based, where the metagenomic DNA fragments are processed as a set of overlapping words by using the word2vec model to vectorize them in order to feed the deep learning model. NLP-MeTaxa output is visualized as NCBI taxonomy tree, this representation helps to show the connection between the predicted taxonomic identifiers. NLP-MeTaxa was trained on large-scale data from the NCBI RefSeq, more than 14,000 complete microbial genomes. The NLP-MeTaxa code is available at the website: https://github.com/padriba/NLP_MeTaxa/ Results: We evaluated NLP-MeTaxa with a real and simulated metagenomic dataset and compared our results to other tools' results. The experimental results have shown that our method outperforms the other methods especially for the classification of low-ranking taxonomic class such as species and genus. Conclusion: In summary, our new method might provide novel insight for understanding the microbial community through the identification of the organisms it might contain.


Sign in / Sign up

Export Citation Format

Share Document