trait prediction
Recently Published Documents


TOTAL DOCUMENTS

54
(FIVE YEARS 24)

H-INDEX

11
(FIVE YEARS 2)

2021 ◽  
Vol 53 (1) ◽  
Author(s):  
Miguel Pérez-Enciso ◽  
Laura M. Zingaretti ◽  
Yuliaxis Ramayo-Caldas ◽  
Gustavo de los Campos

2021 ◽  
Author(s):  
Surbhi Madan ◽  
Monika Gahalawat ◽  
Tanaya Guha ◽  
Ramanathan Subramanian

2021 ◽  
Vol 13 (20) ◽  
pp. 4144
Author(s):  
Eva Neuwirthová ◽  
Zuzana Lhotáková ◽  
Petr Lukeš ◽  
Jana Albrechtová

In this study, we examine leaf reflectance as the main optical property used in remote sensing of vegetation. The total leaf reflectance consists of two main components: a diffuse component, originating from the leaf interior, and a component reflected directly from the leaf surface. The latter contains specular (mirror-like) reflectance (SR) and surface particle scattering, driven by the surface roughness. Our study aimed to (1) reveal the effects of key leaf structural traits on SR in 400–2500 nm, and (2) compare the performance of PLSR models of leaf biophysical properties based on the total reflectance and SR removal reflectance. Four Arabidopsis thaliana structural surface mutants and six Hieracium species differing in trichome properties were studied. PCA did not reveal any systematic effect of trichome density, length, and morphology on SR. Therefore, the results do not support the hypothesis that leaves with denser and longer trichomes have lower SR and higher total reflectance than the smooth leaves. SR removal did not remarkably improve PLSR models of biophysical traits (up to 2% of RMSE). Thus, in herbaceous dorsiventral leaves with relatively sparse trichomes of various morphology and without apparent waxy surface, we cannot confirm that SR removal significantly improves biophysical trait prediction.


2021 ◽  
Author(s):  
Abdou Rahmane Wade ◽  
Harold Duruflé ◽  
Leopoldo Sanchez ◽  
Vincent Segura

AbstractMulti-omics represent a promising link between phenotypes and genome variation. Few studies yet address their integration to understand genetic architecture and improve predictability. Our study used 241 poplar genotypes, phenotyped in two common gardens, with their xylem and cambium RNA sequenced at one site, yielding large phenotypic, genomic and transcriptomic datasets. For each trait, prediction models were built with genotypic or transcriptomic data and compared to concatenation integrating both omics. The advantage of integration varied across traits and, to understand such differences, we made an eQTL analysis to characterize the interplay between the genome and the transcriptome and classify the predicting features into CIS or TRANS relationships. A strong and significant negative correlation was found between the change in predictability and the change in predictor importance for eQTLs (both TRANS and CIS effects) and CIS regulated transcripts, and mostly for traits showing beneficial integration and evaluated in the site of transcriptomic sampling. Consequently, beneficial integration happens when redundancy of predictors is decreased, leaving the stage to other less prominent but complementary predictors. An additional GO enrichment analysis appeared to corroborate such statistical output. To our knowledge, this is a novel finding delineating a promising way to explore data integration.One-sentence summarySuccessful multi-omics integration when predicting phenotypes makes redundant the predictors that are linked to ubiquitous connections between the omics, according to biological and statistical approaches


2021 ◽  
Vol 53 (1) ◽  
Author(s):  
Miguel Pérez-Enciso ◽  
Laura M. Zingaretti ◽  
Yuliaxis Ramayo-Caldas ◽  
Gustavo de los Campos

Abstract Background Analysis and prediction of complex traits using microbiome data combined with host genomic information is a topic of utmost interest. However, numerous questions remain to be answered: how useful can the microbiome be for complex trait prediction? Are estimates of microbiability reliable? Can the underlying biological links between the host’s genome, microbiome, and phenome be recovered? Methods Here, we address these issues by (i) developing a novel simulation strategy that uses real microbiome and genotype data as inputs, and (ii) using variance-component approaches (Bayesian Reproducing Kernel Hilbert Space (RKHS) and Bayesian variable selection methods (Bayes C)) to quantify the proportion of phenotypic variance explained by the genome and the microbiome. The proposed simulation approach can mimic genetic links between the microbiome and genotype data by a permutation procedure that retains the distributional properties of the data. Results Using real genotype and rumen microbiota abundances from dairy cattle, simulation results suggest that microbiome data can significantly improve the accuracy of phenotype predictions, regardless of whether some microbiota abundances are under direct genetic control by the host or not. This improvement depends logically on the microbiome being stable over time. Overall, random-effects linear methods appear robust for variance components estimation, in spite of the typically highly leptokurtic distribution of microbiota abundances. The predictive performance of Bayes C was higher but more sensitive to the number of causative effects than RKHS. Accuracy with Bayes C depended, in part, on the number of microorganisms’ taxa that influence the phenotype. Conclusions While we conclude that, overall, genome-microbiome-links can be characterized using variance component estimates, we are less optimistic about the possibility of identifying the causative host genetic effects that affect microbiota abundances, which would require much larger sample sizes than are typically available for genome-microbiome-phenome studies. The R code to replicate the analyses is in https://github.com/miguelperezenciso/simubiome.


2021 ◽  
Author(s):  
KOUSHIK DEB

Character Computing consists of not only personality trait recognition, but also correlation among these traits. Tons of research has been conducted in this area. Various factors like demographics, sentiment, gender, LIWC, and others have been taken into account in order to understand human personality. In this paper, we have concentrated on the factors that could be obtained from available data using Natural Language Processing. It has been observed that the most successful personality trait prediction models are highly dependent on NLP techniques. Researchers across the globe have used different kinds of machine learning and deep learning techniques to automate this process. Different combinations of factors lead the research in different directions. We have presented a comparative study among those experiments and tried to derive a direction for future development.


Author(s):  
Qian Wang ◽  
Bo Jin ◽  
Fan Liu ◽  
Zhilong Li ◽  
Yu Tan ◽  
...  

2021 ◽  
Vol 13 (3) ◽  
pp. 391 ◽  
Author(s):  
Zuzana Lhotáková ◽  
Veronika Kopačková-Strnadová ◽  
Filip Oulehle ◽  
Lucie Homolová ◽  
Eva Neuwirthová ◽  
...  

Scaling leaf-level optical signals to the canopy level is essential for airborne and satellite-based forest monitoring. In evergreen trees, biophysical and optical traits may change as foliage ages. This study aims to evaluate the effect of age in Norway spruce needle on biophysical trait-prediction based on laboratory leaf-level spectra. Mature Norway spruce trees were sampled at forest stands in ten headwater catchments with different soil properties. Foliage biophysical traits (pigments, phenolics, lignin, cellulose, leaf mass per area, water, and nitrogen content) were assessed for three needle-age classes. Complementary samples for needle reflectance and transmittance were measured using an integrating sphere. Partial least square regression (PLSR) models were constructed for predicting needle biophysical traits from reflectance—separating needle age classes and assessing all age classes together. The ten study sites differed in soil properties rather than in needle biophysical traits. Optical properties consistently varied among age classes; however, variation related to the soil conditions was less pronounced. The predictive power of PLSR models was needle-age dependent for all studied traits. The following traits were predicted with moderate accuracy: needle pigments, phenolics, leaf mass per area and water content. PLSR models always performed better if all needle age classes were included (rather than individual age classes separately). This also applied to needle-age independent traits (water and lignin). Thus, we recommend including not only current but also older needle traits as a ground truth for evergreen conifers with long needle lifespan.


Sign in / Sign up

Export Citation Format

Share Document