scholarly journals Physiological mechanisms of adaptive developmental plasticity in Rana temporaria island populations

2017 ◽  
Vol 17 (1) ◽  
Author(s):  
Pablo Burraco ◽  
Ana Elisa Valdés ◽  
Frank Johansson ◽  
Ivan Gomez-Mestre
Author(s):  
Mary Jane West-Eberhard

A book on developmental plasticity needs a chapter on assessment, if only to show that adaptive environmental assessment occurs. Skepticism regarding the ability of nonhuman organisms to assess conditions well enough to make adaptive decisions has a long history in evolutionary biology, and it has been an important barrier to understanding the evolution of adaptive developmental plasticity. It is worth briefly reviewing this history in order to understand certain preconceptions about assessment that still persist. In the nineteenth century, critics of Darwin’s theory of sexual selection (Darwin, 1871) balked at the idea of an “aesthetic sense” in lowly creatures that would enable female choice of mates (representative papers are reprinted and discussed in Bajema, 1984). Later, the barrier persisted for other reasons. Even though naturalists routinely used the condition-appropriate expression of phenotypic traits to support adaptation hypotheses—a practice that assumes adaptive assessment of conditions as it is defined here—theoretically inclined biologists paid little attention to the question of facultatively expressed traits. Part of the difficulty lay in the problem of explaining how adaptive assessment could evolve within the framework of conventional genetics. Theodosius Dobzhansky, one of the twentieth century’s leading evolutionary biologists, acknowledged this unresolved problem in remarks following a lecture by J. S. Kennedy on the phase polyphenisms of migratory locusts (Kennedy, 1961). Dobzhansky referred to the “challenge to a geneticist” of explaining the adaptive switch between the sedentary and the migratory phenotypes of the locusts, which had been shown to be largely independent of genotype. He suggested that an extrachromosomal factor may be involved, a symbiotic microorganism that acts as a “plasmagene” whose multiplication would eventually stimulate phase change. Although Dobzhansky’s proposal was no more preposterous than some of the regulatory devices that have actually been discovered, Kennedy (1961) minced no words in his reply to this suggestion: . . . [W]e need not feel obliged to invoke a second organism to explain [phase polymorphism] unless we are reluctant to concede an important part to the environment as well as to heredity in moulding development. . . .


2015 ◽  
Vol 36 (2) ◽  
pp. 155-163 ◽  
Author(s):  
Ori Segev ◽  
Ariel Rodríguez ◽  
Susanne Hauswaldt ◽  
Karen Hugemann ◽  
Miguel Vences

Amphibians vary in the degree of pre-metamorphic developmental plasticity in response to risk of predation. Changes in hatching time and development rate can increase egg or tadpole survival respectively by shortening the duration of the more vulnerable stages. The intensity of predator induced developmental response and its direction, i.e. delayed, accelerated, or none, varies considerably between amphibian and predator species. We surveyed freshly deposited clutches of the European common frog Rana temporaria in a population in Braunschweig, Germany and found that 62% (N = 20) of the clutches contained planarians (Schmidtea nova), with an average of 3.94 ± 0.79 and a maximum of 13 planarians per clutch. A laboratory predation experiment confirmed that this planaria preys on R. temporaria eggs and early embryos. We further exposed freshly laid egg masses to either free, caged, or no planarians treatments using floating containers within a breeding pond where the two species co-occur. After 10 days exposure, embryos showed developmental stages 14-25 along the Gosner scale with statistically significant positive effects of both predator treatments. The observed effect was rather slight as predator-exposed individuals showed an increase by a single Gosner stage relative to those raised without planarians. The detected trend suggests that direct and indirect cues from flatworms, rarely considered as anuran predators, might induce a developmental response in R. temporaria early developmental stages.


Author(s):  
Ainash Childebayeva ◽  
Jaclyn M Goodrich ◽  
Fabiola Leon-Velarde ◽  
Maria Rivera-Chira ◽  
Melisa Kiyamu ◽  
...  

Abstract High-altitude adaptation is a classic example of natural selection operating on the human genome. Physiological and genetic adaptations have been documented in populations with a history of living at high altitude. However, the role of epigenetic gene regulation, including DNA methylation, in high-altitude adaptation is not well understood. We performed an epigenome-wide DNA methylation association study based on whole blood from 113 Peruvian Quechua with differential lifetime exposures to high altitude (>2,500) and recruited based on a migrant study design. We identified two significant differentially methylated positions (DMPs) and 62 differentially methylated regions (DMRs) associated with high-altitude developmental and lifelong exposure statuses. DMPs and DMRs were found in genes associated with hypoxia-inducible factor pathway, red blood cell production, blood pressure, and others. DMPs and DMRs associated with fractional exhaled Nitric Oxide (FeNO) also were identified. We found a significant association between EPAS1 methylation and EPAS1 SNP genotypes, suggesting that local genetic variation influences patterns of methylation. Our findings demonstrate that DNA methylation is associated with early developmental and lifelong high-altitude exposures among Peruvian Quechua as well as altitude-adaptive phenotypes. Together these findings suggest that epigenetic mechanisms might be involved in adaptive developmental plasticity to high altitude. Moreover, we show that local genetic variation is associated with DNA methylation levels, suggesting that methylation associated SNPs could be a potential avenue for research on genetic adaptation to hypoxia in Andeans.


Nature ◽  
2004 ◽  
Vol 431 (7006) ◽  
pp. 261-262 ◽  
Author(s):  
Fabien Aubret ◽  
Richard Shine ◽  
Xavier Bonnet

2012 ◽  
Vol 67 (1) ◽  
pp. 135-143 ◽  
Author(s):  
Tomas Brodin ◽  
Martin I. Lind ◽  
Miria Kaltiala Wiberg ◽  
Frank Johansson

Sign in / Sign up

Export Citation Format

Share Document