scholarly journals Global shifts in species richness have shaped carpet shark evolution

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Bret M. Boyd ◽  
Jason C. Seitz

Abstract Background The evolutionary processes that shape patterns of species richness in marine ecosystems are complex and may differ between organismal groups. There has been considerable interest in understanding the evolutionary processes that led to marine species richness being concentrated in specific geographical locations. In this study we focus on the evolutionary history of a group of small-to-medium sized sharks known as carpet sharks. While a few carpet shark species are widespread, the majority of carpet shark species richness is contained within a biodiversity hotspot at the boundary of the Indian and Pacific oceans. We address the significance of this biodiversity hotspot in carpet shark evolution and speciation by leveraging a rich fossil record and molecular phylogenetics to examine the prehistoric distribution of carpet sharks. Results We find that carpet sharks species richness was greatest in shallow seas connected to the Atlantic Ocean during the Late Cretaceous, but that there was a subsequent loss of biodiversity in Atlantic waters. Fossil evidence from sites in close geographic proximity to the current center of carpet shark diversity are generally restricted to younger geologic strata. Conclusions From this data we conclude that (1) center of carpet shark biodiversity has shifted during the last 100 million years, (2) carpet sharks have repeatedly dispersed to nascent habitat (including to their current center of diversity), and (3) the current center of carpet shark biodiversity conserves lineages that have been extirpated from this prehistoric range and is a source of new carpet shark species. Our findings provide insights into the roles of marine biodiversity hotspots for higher-tropic level predators and the methods applied here can be used for additional studies of shark evolution.

Evolution ◽  
2017 ◽  
Vol 72 (2) ◽  
pp. 288-302 ◽  
Author(s):  
Danwei Huang ◽  
Emma E. Goldberg ◽  
Loke Ming Chou ◽  
Kaustuv Roy

2018 ◽  
Author(s):  
Mark J Costello ◽  
Tri Arifanti ◽  
Chhaya Chaudhary ◽  
Dinusha Jayathilake ◽  
Han-Yang Lin ◽  
...  

Understanding biodiversity at local and regional requires a global context. This talk presents the global pattern of marine species richness and endemicity, including latitude and depth. We compare maps of marine species endemicity across all taxa (65,000 species), and particular taxa (razor clams, amphipods, polychaetes, seagrass, jellyfish, bryozoans, fish), with a new map of marine ecosystems based on analysis of 20 environmental variables. We show how species richness increases with temperature but dips at the equator, and decreases with depth. Thirty biogeographic realms are distinguished based on species endemicity, with more in coastal than offshore areas. Species richness and endemicity are higher in benthic than pelagic taxa, and macro- than micro- and mega-fauna. However, we should expect individual taxa to vary from these overall patterns due to their evolutionary origins and competition with other taxa; and patterns within geographic regions to vary due to constancy of some environmental variables (e.g. temperature) and local scale habitat variation. Thus nesting of taxon and regional studies within this global context may indicate how ecological interactions have shaped the global evolution of marine biodiversity.


2018 ◽  
Author(s):  
Mark J Costello ◽  
Tri Arifanti ◽  
Chhaya Chaudhary ◽  
Dinusha Jayathilake ◽  
Han-Yang Lin ◽  
...  

Understanding biodiversity at local and regional requires a global context. This talk presents the global pattern of marine species richness and endemicity, including latitude and depth. We compare maps of marine species endemicity across all taxa (65,000 species), and particular taxa (razor clams, amphipods, polychaetes, seagrass, jellyfish, bryozoans, fish), with a new map of marine ecosystems based on analysis of 20 environmental variables. We show how species richness increases with temperature but dips at the equator, and decreases with depth. Thirty biogeographic realms are distinguished based on species endemicity, with more in coastal than offshore areas. Species richness and endemicity are higher in benthic than pelagic taxa, and macro- than micro- and mega-fauna. However, we should expect individual taxa to vary from these overall patterns due to their evolutionary origins and competition with other taxa; and patterns within geographic regions to vary due to constancy of some environmental variables (e.g. temperature) and local scale habitat variation. Thus nesting of taxon and regional studies within this global context may indicate how ecological interactions have shaped the global evolution of marine biodiversity.


2021 ◽  
Vol 10 (2) ◽  
Author(s):  
Neil Angelo Abreo ◽  
Vladimer Kobayashi

The on-going COVID-19 pandemic is expected to exacerbate the marine litter problem. The use of disposable personal protective equipment (e.g., facemasks) will result to increase in marine plastics pollution. Here we explored the potential of citizen science to determine the distribution of marine litter associated with COVID-19 in Mindanao, Philippines. Volunteers were invited through social media, contributing geotagged photographs of marine litter associated with COVID-19. Although the information is limited, results showed the possible pervasiveness of marine litter associated with COVID-19. Since the waters surrounding the Southern Philippines is known to host high marine biodiversity, the potential negative interaction of marine litter associated with COVID-19 and marine species is inevitable. The contribution of citizen science to address some of the limitations on marine litter research is highlighted and is recommended to be explored further.


2021 ◽  
Vol 118 (15) ◽  
pp. e2015094118
Author(s):  
Chhaya Chaudhary ◽  
Anthony J. Richardson ◽  
David S. Schoeman ◽  
Mark J. Costello

The latitudinal gradient in species richness, with more species in the tropics and richness declining with latitude, is widely known and has been assumed to be stable over recent centuries. We analyzed data on 48,661 marine animal species since 1955, accounting for sampling variation, to assess whether the global latitudinal gradient in species richness is being impacted by climate change. We confirm recent studies that show a slight dip in species richness at the equator. Moreover, richness across latitudinal bands was sensitive to temperature, reaching a plateau or declining above a mean annual sea surface temperature of 20 °C for most taxa. In response, since the 1970s, species richness has declined at the equator relative to an increase at midlatitudes and has shifted north in the northern hemisphere, particularly among pelagic species. This pattern is consistent with the hypothesis that climate change is impacting the latitudinal gradient in marine biodiversity at a global scale. The intensification of the dip in species richness at the equator, especially for pelagic species, suggests that it is already too warm there for some species to survive.


Author(s):  
Tania Valdivia‐Carrillo ◽  
Axayácatl Rocha‐Olivares ◽  
Héctor Reyes‐Bonilla ◽  
José Francisco Domínguez‐Contreras ◽  
Adrian Munguia‐Vega

2011 ◽  
Vol 2011 ◽  
pp. 1-14 ◽  
Author(s):  
Beth A. Polidoro ◽  
Cristiane T. Elfes ◽  
Jonnell C. Sanciangco ◽  
Helen Pippard ◽  
Kent E. Carpenter

Given the economic and cultural dependence on the marine environment in Oceania and a rapidly expanding human population, many marine species populations are in decline and may be vulnerable to extinction from a number of local and regional threats. IUCN Red List assessments, a widely used system for quantifying threats to species and assessing species extinction risk, have been completed for 1190 marine species in Oceania to date, including all known species of corals, mangroves, seagrasses, sea snakes, marine mammals, sea birds, sea turtles, sharks, and rays present in Oceania, plus all species in five important perciform fish groups. Many of the species in these groups are threatened by the modification or destruction of coastal habitats, overfishing from direct or indirect exploitation, pollution, and other ecological or environmental changes associated with climate change. Spatial analyses of threatened species highlight priority areas for both site- and species-specific conservation action. Although increased knowledge and use of newly available IUCN Red List assessments for marine species can greatly improve conservation priorities for marine species in Oceania, many important fish groups are still in urgent need of assessment.


Paleobiology ◽  
2009 ◽  
Vol 35 (4) ◽  
pp. 612-630 ◽  
Author(s):  
Arnold I. Miller ◽  
Devin P. Buick ◽  
Katherine V. Bulinski ◽  
Chad A. Ferguson ◽  
Austin J. W. Hendy ◽  
...  

Previous analyses of the history of Phanerozoic marine biodiversity suggested that the post-Paleozoic increase observed at the family level and below was caused, in part, by an increase in global provinciality associated with the breakup of Pangea. Efforts to characterize the Phanerozoic history of provinciality, however, have been compromised by interval-to-interval variations in the methods and standards used by researchers to calibrate the number of provinces. With the development of comprehensive, occurrence-based data repositories such as the Paleobiology Database (PaleoDB), it is now possible to analyze directly the degree of global compositional disparity as a function of geographic distance (geo-disparity) and changes thereof throughout the history of marine animal life. Here, we present a protocol for assessing the Phanerozoic history of geo-disparity, and we apply it to stratigraphic bins arrayed throughout the Phanerozoic for which data were accessed from the PaleoDB. Our analyses provide no indication of a secular Phanerozoic increase in geo-disparity. Furthermore, fundamental characteristics of geo-disparity may have changed from era to era in concert with changes to marine venues, although these patterns will require further scrutiny in future investigations.


Biologia ◽  
2015 ◽  
Vol 70 (1) ◽  
Author(s):  
Małgorzata Kolicka ◽  
Marcin Krzysztof Dziuba ◽  
Krzysztof Zawierucha ◽  
Natalia Kuczyńska–Kippen ◽  
Lech Kotwicki

AbstractGreenhouses form favourable conditions for establishing stable populations of native as well as invasive alien microinvertebrates. Investigations of palm houses have a long tradition and native, alien and new species for science have been found in many of them. The examined pond and some microreservoirs in Bromeliaceae and Agavoideae in Pozna´n Palm House (Poland) sampled in 2012, appeared to contain representatives of Rotifera (64 species), Copepoda (2 species), Polychaeta, Acari and Insecta larvae. The most abundant Rotifera species were: Anuraeopsis fissa Gosse, 1851, Ascomorpha ecaudis Perty 1850, Euchlanis dilatata Ehrenberg, 1832, Pompholyx sulcata Hudson, 1885 and Trichocerca rousseleti Voight, 1902. Moreover, rotifers considered to be rare in Poland, i.e., Asplanchna herricki De Guerne, 1888, Collotheca pelagica Rousselet, 1893, Colurella sulcata Stenroos, 1898, Gastropus minor Rousselet, 1892 were also detected in Pozna´n Palm House. Two recorded Copepoda species were Phyllognathopus viguieri (Maupas, 1892) found in agave microreservoirs and Mesocyclops leuckarti (Claus, 1857) found in reservoir with aquatic plants. For biodiversity evaluation of rotifers Margalef’s and Shannon-Wiener’s indexes were used and in order to determine species richness the Simpson index was calculated. Additionally, a complete list of all aquatic invertebrates is presented, i.e., Plathelmintes (11 species), Nemeretea (2 species), Oligochatea (13 taxa), Polychaeta (7 species), Gastrotricha (13 taxa) and Copepoda (1 species) previously recorded in Pozna´n Palm House. To sum up, Palm houses create a convenient habitat for a prevalence of native and introduced invertebrates and are a putative source of alien species, possibly facilitating their release to the environment.


Sign in / Sign up

Export Citation Format

Share Document