scholarly journals Comparative genomic analysis of Bacillus paralicheniformis MDJK30 with its closely related species reveals an evolutionary relationship between B. paralicheniformis and B. licheniformis

BMC Genomics ◽  
2019 ◽  
Vol 20 (1) ◽  
Author(s):  
Yuhui Du ◽  
Jinjin Ma ◽  
Zhiqiu Yin ◽  
Kai Liu ◽  
Gan Yao ◽  
...  
2019 ◽  
Author(s):  
Marian Dominguez-Mirazo ◽  
Rong Jin ◽  
Joshua S. Weitz

AbstractHuanglongbing (HLB; yellow shoot disease) is a severe worldwide infectious disease for citrus family plants. The pathogen Candidatus Liberibacter asiaticus (CLas) is an alphapro-teobacterium of the Rhizobiaceae family that has been identified as the cause. The virulence of CLas has been attributed, in part, to prophage encoded genes. Prophage and prophage like elements have been identified in 12 of the 15 CLas available genomes, and are classified into three prophage types. Here, we re-examined all 15 CLas genomes using a de novo prediction approach and expanded the number of prophage like elements from 16 to 33. Further, we find that all CLas contain at least one prophage-like sequence. Comparative analysis reveals a prevalent, albeit previously unknown, prophage-like sequence type that is a remnant of an integrated prophage. Notably, this remnant prophage is found in the Ishi-1 CLas strain that had previously been reported as lacking prophages. Our findings provide both a resource and new insights into the evolutionary relationship between phage and CLas pathogenicity.


2019 ◽  
Author(s):  
Liu Bin ◽  
Zhiqiu Yin ◽  
Chao Yuan ◽  
Yuhui Du ◽  
Pan Yang ◽  
...  

Abstract Background The Hafnia genus is an opportunistic pathogen that has been implicated in both nosocomial and community-acquired infections. Although Hafnia is fairly often isolated from clinical material, its taxonomy has remained an unsolved riddle, and the involvement and importance of Hafnia in human disease is also uncertain. Here, we used comparative genomic analysis to define the taxonomy of Hafnia, identify species-specific genes that may be the result of ecological and pathogenic specialization, and reveal virulence-related genetic profiles that may contribute to pathogenesis. Results One complete genome sequence and 19 draft genome sequences for Hafnia strains were generated and combined with 27 publicly available genomes. We provided high-resolution typing methods by constructing phylogeny and population structure based on single-copy core genes in combination with whole genome average nucleotide identity to identify two distant Hafnia species (alvei and paralvei) and one mislabeled strain. The open pan-genome and the presence of numerous mobile genetic elements reveal that Hafnia has undergone massive gene rearrangements. Presence of species-specific core genomes associated with metabolism and transport suggests the putative niche differentiation between alvei and paralvei. We also identified possession of diverse virulence-related profiles in both Hafnia species., including the macromolecular secretion system, virulence, and antimicrobial resistance. In the macromolecular system, T1SS, Flagellum 1, Tad pilus and T6SS-1 were conserved in Hafnia, whereas T4SS, T5SS, and other T6SSs exhibited the evolution of diversity. The virulence factors in Hafnia are related to adherence, toxin, iron uptake, stress adaptation, and efflux pump. The identified resistance genes are associated with beta-lactamases and tetracycline. These virulence-related profiles identified at the genomic level provide insights into Hafnia pathogenesis and the differentiation between alvei and paralvei. Conclusions Our research using core genome phylogeny and comparative genomics analysis of a larger collection of strains provides a comprehensive view of the taxonomy and species-specific traits between Hafnia species. Deciphering the genome of Hafnia strains possessing a reservoir of macromolecular secretion systems, virulence factors, and resistance genes related to pathogenicity may provide insights into addressing its numerous infections and devising strategies to combat the pathogen.


2019 ◽  
Author(s):  
Liu Bin ◽  
Zhiqiu Yin ◽  
Chao Yuan ◽  
Yuhui Du ◽  
Pan Yang ◽  
...  

Abstract Background The Hafnia genus is an opportunistic pathogen that has been implicated in both nosocomial and community-acquired infections. Although Hafnia is fairly often isolated from clinical material, its taxonomy has remained an unsolved riddle, and the involvement and importance of Hafnia in human disease is also uncertain. Here, we used comparative genomic analysis to define the taxonomy of Hafnia, identify species-specific genes that may be the result of ecological and pathogenic specialization, and reveal virulence-related genetic profiles that may contribute to pathogenesis. Results One complete genome sequence and 19 draft genome sequences for Hafnia strains were generated and combined with 27 publicly available genomes. We provided high-resolution typing methods by constructing phylogeny and population structure based on single-copy core genes in combination with whole genome average nucleotide identity to identify two distant Hafnia species (alvei and paralvei) and one mislabeled strain. The open pan-genome and the presence of numerous mobile genetic elements reveal that Hafnia has undergone massive gene rearrangements. Presence of species-specific core genomes associated with metabolism and transport suggests the putative niche differentiation between alvei and paralvei. We also identified possession of diverse virulence-related profiles in both Hafnia species., including the macromolecular secretion system, virulence, and antimicrobial resistance. In the macromolecular system, T1SS, Flagellum 1, Tad pilus and T6SS-1 were conserved in Hafnia, whereas T4SS, T5SS, and other T6SSs exhibited the evolution of diversity. The virulence factors in Hafnia are related to adherence, toxin, iron uptake, stress adaptation, and efflux pump. The identified resistance genes are associated with beta-lactamases and tetracycline. These virulence-related profiles identified at the genomic level provide insights into Hafnia pathogenesis and the differentiation between alvei and paralvei. Conclusions Our research using core genome phylogeny and comparative genomics analysis of a larger collection of strains provides a comprehensive view of the taxonomy and species-specific traits between Hafnia species. Deciphering the genome of Hafnia strains possessing a reservoir of macromolecular secretion systems, virulence factors, and resistance genes related to pathogenicity may provide insights into addressing its numerous infections and devising strategies to combat the pathogen.


BMC Genomics ◽  
2019 ◽  
Vol 20 (1) ◽  
Author(s):  
Zhiqiu Yin ◽  
Chao Yuan ◽  
Yuhui Du ◽  
Pan Yang ◽  
Chengqian Qian ◽  
...  

Abstract Background The Hafnia genus is an opportunistic pathogen that has been implicated in both nosocomial and community-acquired infections. Although Hafnia is fairly often isolated from clinical material, its taxonomy has remained an unsolved riddle, and the involvement and importance of Hafnia in human disease is also uncertain. Here, we used comparative genomic analysis to define the taxonomy of Hafnia, identify species-specific genes that may be the result of ecological and pathogenic specialization, and reveal virulence-related genetic profiles that may contribute to pathogenesis. Results One complete genome sequence and 19 draft genome sequences for Hafnia strains were generated and combined with 27 publicly available genomes. We provided high-resolution typing methods by constructing phylogeny and population structure based on single-copy core genes in combination with whole genome average nucleotide identity to identify two distant Hafnia species (alvei and paralvei) and one mislabeled strain. The open pan-genome and the presence of numerous mobile genetic elements reveal that Hafnia has undergone massive gene rearrangements. Presence of species-specific core genomes associated with metabolism and transport suggests the putative niche differentiation between alvei and paralvei. We also identified possession of diverse virulence-related profiles in both Hafnia species., including the macromolecular secretion system, virulence, and antimicrobial resistance. In the macromolecular system, T1SS, Flagellum 1, Tad pilus and T6SS-1 were conserved in Hafnia, whereas T4SS, T5SS, and other T6SSs exhibited the evolution of diversity. The virulence factors in Hafnia are related to adherence, toxin, iron uptake, stress adaptation, and efflux pump. The identified resistance genes are associated with aminoglycoside, beta-lactam, bacitracin, cationic antimicrobial peptide, fluoroquinolone, and rifampin. These virulence-related profiles identified at the genomic level provide insights into Hafnia pathogenesis and the differentiation between alvei and paralvei. Conclusions Our research using core genome phylogeny and comparative genomics analysis of a larger collection of strains provides a comprehensive view of the taxonomy and species-specific traits between Hafnia species. Deciphering the genome of Hafnia strains possessing a reservoir of macromolecular secretion systems, virulence factors, and resistance genes related to pathogenicity may provide insights into addressing its numerous infections and devising strategies to combat the pathogen.


2019 ◽  
Author(s):  
Liu Bin ◽  
Zhiqiu Yin ◽  
Chao Yuan ◽  
Yuhui Du ◽  
Pan Yang ◽  
...  

Abstract Background The Hafnia genus is an opportunistic pathogen that has been implicated in both nosocomial and community-acquired infections. Although Hafnia is fairly often isolated from clinical material, its taxonomy has remained an unsolved riddle, and the involvement and importance of Hafnia in human disease is also uncertain. Here, we used comparative genomic analysis to define the taxonomy of Hafnia, identify species-specific genes that may be the result of ecological and pathogenic specialization, and reveal virulence-related genetic profiles that may contribute to pathogenesis. Results One complete genome sequence and 19 draft genome sequences for Hafnia strains were generated and combined with 27 publicly available genomes. We provided high-resolution typing methods by constructing phylogeny and population structure based on single-copy core genes in combination with whole genome average nucleotide identity to identify two distant Hafnia species (alvei and paralvei) and one mislabeled strain. The open pan-genome and the presence of numerous mobile genetic elements reveal that Hafnia has undergone massive gene rearrangements. Presence of species-specific core genomes associated with metabolism and transport suggests the putative niche differentiation between alvei and paralvei. We also identified possession of diverse virulence-related profiles in both Hafnia species., including the macromolecular secretion system, virulence, and antimicrobial resistance. In the macromolecular system, T1SS, Flagellum 1, Tad pilus and T6SS-1 were conserved in Hafnia, whereas T4SS, T5SS, and other T6SSs exhibited the evolution of diversity. The virulence factors in Hafnia are related to adherence, toxin, iron uptake, stress adaptation, and efflux pump. The identified resistance genes are associated with beta-lactamases and tetracycline. These virulence-related profiles identified at the genomic level provide insights into Hafnia pathogenesis and the differentiation between alvei and paralvei. Conclusions Our research using core genome phylogeny and comparative genomics analysis of a larger collection of strains provides a comprehensive view of the taxonomy and species-specific traits between Hafnia species. Deciphering the genome of Hafnia strains possessing a reservoir of macromolecular secretion systems, virulence factors, and resistance genes related to pathogenicity may provide insights into addressing its numerous infections and devising strategies to combat the pathogen.


2019 ◽  
Author(s):  
Liu Bin ◽  
Zhiqiu Yin ◽  
Chao Yuan ◽  
Yuhui Du ◽  
Pan Yang ◽  
...  

Abstract Background The Hafnia genus is an opportunistic pathogen that has been implicated in both nosocomial and community-acquired infections. Although Hafnia is fairly often isolated from clinical material, its taxonomy has remained an unsolved riddle, and the involvement and importance of Hafnia in human disease is also uncertain. Here, we used comparative genomic analysis to define the taxonomy of Hafnia, identify species-specific genes that may be the result of ecological and pathogenic specialization, and reveal virulence-related genetic profiles that may contribute to pathogenesis. Results One complete genome sequence and 19 draft genome sequences for Hafnia strains were generated and combined with 27 publicly available genomes. We provided high-resolution typing methods by constructing phylogeny and population structure based on single-copy core genes in combination with whole genome average nucleotide identity to identify two distant Hafnia species (alvei and paralvei) and one mislabeled strain. The open pan-genome and the presence of numerous mobile genetic elements reveal that Hafnia has undergone massive gene rearrangements. Presence of species-specific core genomes associated with metabolism and transport suggests the putative niche differentiation between alvei and paralvei. We also identified possession of diverse virulence-related profiles in both Hafnia species., including the macromolecular secretion system, virulence, and antimicrobial resistance. In the macromolecular system, T1SS, Flagellum 1, Tad pilus and T6SS-1 were conserved in Hafnia, whereas T4SS, T5SS, and other T6SSs exhibited the evolution of diversity. The virulence factors in Hafnia are related to adherence, toxin, iron uptake, stress adaptation, and efflux pump. The identified resistance genes are associated with beta-lactamases and tetracycline. These virulence-related profiles identified at the genomic level provide insights into Hafnia pathogenesis and the differentiation between alvei and paralvei. Conclusions Our research using core genome phylogeny and comparative genomics analysis of a larger collection of strains provides a comprehensive view of the taxonomy and species-specific traits between Hafnia species. Deciphering the genome of Hafnia strains possessing a reservoir of macromolecular secretion systems, virulence factors, and resistance genes related to pathogenicity may provide insights into addressing its numerous infections and devising strategies to combat the pathogen.


Sign in / Sign up

Export Citation Format

Share Document