scholarly journals Using DenseFly algorithm for cell searching on massive scRNA-seq datasets

BMC Genomics ◽  
2020 ◽  
Vol 21 (S5) ◽  
Author(s):  
Yixin Chen ◽  
Sijie Chen ◽  
Xuegong Zhang

Abstract Background High throughput single-cell transcriptomic technology produces massive high-dimensional data, enabling high-resolution cell type definition and identification. To uncover the expressional patterns beneath the big data, a transcriptional landscape searching algorithm at a single-cell level is desirable. Results We explored the feasibility of using DenseFly algorithm for cell searching on scRNA-seq data. DenseFly is a locality sensitive hashing algorithm inspired by the fruit fly olfactory system. The experiments indicate that DenseFly outperforms the baseline methods FlyHash and SimHash in classification tasks, and the performance is robust to dropout events and batch effects. Conclusion We developed a method for mapping cells across scRNA-seq datasets based on the DenseFly algorithm. It can be an efficient tool for cell atlas searching.

2017 ◽  
Author(s):  
Sueli Marques ◽  
Darya Vanichkina ◽  
David van Bruggen ◽  
Elisa M. Floriddia ◽  
Hermany Munguba ◽  
...  

SummaryPdgfra+ oligodendrocyte precursor cells (OPCs) arise in distinct specification waves during embryogenesis in the central nervous system (CNS). It is unclear whether there is a correlation between these waves and different transcriptional oligodendrocyte (OL) states at adult stages. Here we present a bulk and single-cell transcriptomics resource providing insights on how transitions between these states occur. We show that E13.5 Pdgfra+ populations are not OPCs, exhibiting instead hallmarks of neural progenitors. A subset of these progenitors, which we refer as pre-OPCs, rewires their transcriptional landscape, converging into indistinguishable OPC states at E17.5 and post-natal stages. P7 brain and spinal cord OPCs present similar transcriptional profiles at the single-cell level, indicating that OPC states are not region-specific. Postnatal OPC progeny of E13.5 Pdgfra+ have electrophysiological and transcriptional profiles similar to OPCs derived from subsequent specification waves. In addition, lineage tracing indicates that a subset of E13.5 Pdgfra+ cells also originate cells of the pericyte lineage. In summary, our results indicate that embryonic Pdgfra+ cells are diverse and give rise at post-natal stages to distinct cell lineages, including OPCs with convergent transcriptional profiles in different CNS regions.


2019 ◽  
Author(s):  
Ruixin Wang ◽  
Dongni Wang ◽  
Dekai Kang ◽  
Xusen Guo ◽  
Chong Guo ◽  
...  

BACKGROUND In vitro human cell line models have been widely used for biomedical research to predict clinical response, identify novel mechanisms and drug response. However, one-fifth to one-third of cell lines have been cross-contaminated, which can seriously result in invalidated experimental results, unusable therapeutic products and waste of research funding. Cell line misidentification and cross-contamination may occur at any time, but authenticating cell lines is infrequent performed because the recommended genetic approaches are usually require extensive expertise and may take a few days. Conversely, the observation of live-cell morphology is a direct and real-time technique. OBJECTIVE The purpose of this study was to construct a novel computer vision technology based on deep convolutional neural networks (CNN) for “cell face” recognition. This was aimed to improve cell identification efficiency and reduce the occurrence of cell-line cross contamination. METHODS Unstained optical microscopy images of cell lines were obtained for model training (about 334 thousand patch images), and testing (about 153 thousand patch images). The AI system first trained to recognize the pure cell morphology. In order to find the most appropriate CNN model,we explored the key image features in cell morphology classification tasks using the classical CNN model-Alexnet. After that, a preferred fine-grained recognition model BCNN was used for the cell type identification (seven classifications). Next, we simulated the situation of cell cross-contamination and mixed the cells in pairs at different ratios. The detection of the cross-contamination was divided into two levels, whether the cells are mixed and what the contaminating cell is. The specificity, sensitivity, and accuracy of the model were tested separately by external validation. Finally, the segmentation model DialedNet was used to present the classification results at the single cell level. RESULTS The cell texture and density were the influencing factors that can be better recognized by the bilinear convolutional neural network (BCNN) comparing to AlexNet. The BCNN achieved 99.5% accuracy in identifying seven pure cell lines and 86.3% accuracy for detecting cross-contamination (mixing two of the seven cell lines). DilatedNet was applied to the semantic segment for analyzing in single-cell level and achieved an accuracy of 98.2%. CONCLUSIONS This study successfully demonstrated that cell lines can be morphologically identified using deep learning models. Only light-microscopy images and no reagents are required, enabling most labs to routinely perform cell identification tests.


RSC Advances ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 5384-5392
Author(s):  
Abd Alaziz Abu Quba ◽  
Gabriele E. Schaumann ◽  
Mariam Karagulyan ◽  
Doerte Diehl

Setup for a reliable cell-mineral interaction at the single-cell level, (a) study of the mineral by a sharp tip, (b) study of the bacterial modified probe by a characterizer, (c) cell-mineral interaction, (d) subsequent check of the modified probe.


2021 ◽  
Vol 7 (8) ◽  
pp. eabe3610
Author(s):  
Conor J. Kearney ◽  
Stephin J. Vervoort ◽  
Kelly M. Ramsbottom ◽  
Izabela Todorovski ◽  
Emily J. Lelliott ◽  
...  

Multimodal single-cell RNA sequencing enables the precise mapping of transcriptional and phenotypic features of cellular differentiation states but does not allow for simultaneous integration of critical posttranslational modification data. Here, we describe SUrface-protein Glycan And RNA-seq (SUGAR-seq), a method that enables detection and analysis of N-linked glycosylation, extracellular epitopes, and the transcriptome at the single-cell level. Integrated SUGAR-seq and glycoproteome analysis identified tumor-infiltrating T cells with unique surface glycan properties that report their epigenetic and functional state.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Yanping Long ◽  
Zhijian Liu ◽  
Jinbu Jia ◽  
Weipeng Mo ◽  
Liang Fang ◽  
...  

AbstractThe broad application of single-cell RNA profiling in plants has been hindered by the prerequisite of protoplasting that requires digesting the cell walls from different types of plant tissues. Here, we present a protoplasting-free approach, flsnRNA-seq, for large-scale full-length RNA profiling at a single-nucleus level in plants using isolated nuclei. Combined with 10x Genomics and Nanopore long-read sequencing, we validate the robustness of this approach in Arabidopsis root cells and the developing endosperm. Sequencing results demonstrate that it allows for uncovering alternative splicing and polyadenylation-related RNA isoform information at the single-cell level, which facilitates characterizing cell identities.


Sign in / Sign up

Export Citation Format

Share Document