rna profiling
Recently Published Documents


TOTAL DOCUMENTS

421
(FIVE YEARS 184)

H-INDEX

47
(FIVE YEARS 12)

2022 ◽  
Author(s):  
Roxane Khoogar ◽  
Fuyang Li ◽  
Yidong Chen ◽  
Myron Ignatius ◽  
Elizabeth R. Lawlor ◽  
...  

2022 ◽  
Vol 12 ◽  
Author(s):  
Juliane M. D. Ahlers ◽  
Cassandra Falckenhayn ◽  
Nicholas Holzscheck ◽  
Llorenç Solé-Boldo ◽  
Sabrina Schütz ◽  
...  

The dermal sheath (DS) is a population of mesenchyme-derived skin cells with emerging importance for skin homeostasis. The DS includes hair follicle dermal stem cells, which exhibit self-renewal and serve as bipotent progenitors of dermal papilla (DP) cells and DS cells. Upon aging, stem cells exhibit deficiencies in self-renewal and their number is reduced. While the DS of mice has been examined in considerable detail, our knowledge of the human DS, the pathways contributing to its self-renewal and differentiation capacity and potential paracrine effects important for tissue regeneration and aging is very limited. Using single-cell RNA sequencing of human skin biopsies from donors of different ages we have now analyzed the transcriptome of 72,048 cells, including 50,149 fibroblasts. Our results show that DS cells that exhibit stem cell characteristics were lost upon aging. We further show that HES1, COL11A1, MYL4 and CTNNB1 regulate DS stem cell characteristics. Finally, the DS secreted protein Activin A showed paracrine effects on keratinocytes and dermal fibroblasts, promoting proliferation, epidermal thickness and pro-collagen production. Our work provides a detailed description of human DS identity on the single-cell level, its loss upon aging, its stem cell characteristics and its contribution to a juvenile skin phenotype.


Author(s):  
Luděk Záveský ◽  
Eva Jandáková ◽  
Vít Weinberger ◽  
Luboš Minář ◽  
Veronika Hanzíková ◽  
...  

2021 ◽  
Author(s):  
Pradipta Ray ◽  
Stephanie Shiers ◽  
Diana Tavares Ferreira ◽  
Ishwarya Sankaranarayanan ◽  
Megan L Uhelski ◽  
...  

Neuropathic pain is a leading cause of high impact pain, is often disabling and is poorly managed by current therapeutics. Here we focused on a unique group of neuropathic pain patients undergoing thoracic vertebrectomy where the DRG is removed as part of the surgery allowing for molecular characterization and identification of mechanistic drivers of neuropathic pain independently of preclinical models. Our goal was to quantify whole transcriptome RNA abundances using RNA-seq in pain-associated human DRGs from these patients, allowing comprehensive identification of molecular changes in these samples by contrasting them with non-pain associated DRGs. We sequenced 70 human DRGs, including over 50 having mRNA libraries with neuronal mRNA. Our expression analysis revealed profound sex differences in differentially expressed genes including increase of IL1B, TNF, CXCL14, and OSM in male and including CCL1, CCL21, PENK and TLR3 in female DRGs associated with neuropathic pain. Co-expression modules revealed enrichment in members of JUN-FOS signaling in males, and centromere protein coding genes in females. Neuro-immune signaling pathways revealed distinct cytokine signaling pathways associated with neuropathic pain in males (OSM, LIF, SOCS1) and females (CCL1, CCL19, CCL21). We validated cellular expression profiles of a subset of these findings using RNAscope in situ hybridization. Our findings give direct support for sex differences in underlying mechanisms of neuropathic pain in patient populations.


Cells ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 3332
Author(s):  
Robert Chevreau ◽  
Hussein Ghazale ◽  
Chantal Ripoll ◽  
Chaima Chalfouh ◽  
Quentin Delarue ◽  
...  

Ependymal cells reside in the adult spinal cord and display stem cell properties in vitro. They proliferate after spinal cord injury and produce neurons in lower vertebrates but predominantly astrocytes in mammals. The mechanisms underlying this glial-biased differentiation remain ill-defined. We addressed this issue by generating a molecular resource through RNA profiling of ependymal cells before and after injury. We found that these cells activate STAT3 and ERK/MAPK signaling post injury and downregulate cilia-associated genes and FOXJ1, a central transcription factor in ciliogenesis. Conversely, they upregulate 510 genes, seven of them more than 20-fold, namely Crym, Ecm1, Ifi202b, Nupr1, Rbp1, Thbs2 and Osmr—the receptor for oncostatin, a microglia-specific cytokine which too is strongly upregulated after injury. We studied the regulation and role of Osmr using neurospheres derived from the adult spinal cord. We found that oncostatin induced strong Osmr and p-STAT3 expression in these cells which is associated with reduction of proliferation and promotion of astrocytic versus oligodendrocytic differentiation. Microglial cells are apposed to ependymal cells in vivo and co-culture experiments showed that these cells upregulate Osmr in neurosphere cultures. Collectively, these results support the notion that microglial cells and Osmr/Oncostatin pathway may regulate the astrocytic fate of ependymal cells in spinal cord injury.


Author(s):  
María Sánchez-Campillo ◽  
María Teresa Pastor-Fajardo ◽  
Maria Sabater-Molina ◽  
María José López-Andreo ◽  
Elvira Larqué

Abstract Introduction: Dietary exposure and drug treatments influence gut cellular pathways and hence growth and potentially even the gut-brain-microbiome axis. Since eukaryotic mRNA presents poly A sequence that distinguishes them from the prokaryotes mRNA, we could analyze the gene expression of human gut cells using exfoliated gut cells available in stool samples. However, the impact of the critical steps of these non-invasive methods must be analyzed. Methods: We tested prokaryote contamination in all the steps of different procedures to analyze human exfoliome by microarrays and the influence of the fecal sampling collection process. Results & Conclusion: The least bacterial contamination was found using RNA amplified with oligo dT from GeneChip 3´ IVT Pico Reagent kit or using RNA purified by both Oligotex® + oligodT. RNA later® collection of feces affects the microarray results compared to directly frozen fecal samples, although both methods produce similar cDNA quality. This technique is a potential non-invasive diagnostic tool that can be applied to larger studies to quantify intestinal gene expression in humans with non-invasive samples, but samples should always be collected and analyzed under the same procedure.


2021 ◽  
Vol 8 ◽  
Author(s):  
Yu-Sheng Wang ◽  
Jia Guo

The ability to quantify a large number of varied transcripts in single cells in their native spatial context is crucial to accelerate our understanding of health and disease. Bulk cell RNA analysis masks the heterogeneity in the cell population, while the conventional RNA imaging approaches suffer from low multiplexing capacity. Recent advances in multiplexed fluorescence in situ hybridization (FISH) methods enable comprehensive RNA profiling in individual cells in situ. These technologies will have wide applications in many biological and biomedical fields, including cell type classification, signaling network analysis, tissue architecture, disease diagnosis and patient stratification, etc. In this minireview, we will present the recent technological advances of multiplexed single-cell in situ RNA profiling assays, discuss their advantages and limitations, describe their biological applications, highlight the current challenges, and propose potential solutions.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Zhihao Lu ◽  
Huan Chen ◽  
Xi Jiao ◽  
Yujiao Wang ◽  
Lijia Wu ◽  
...  

Abstract Background The human leukocyte antigen class I (HLA-I) genotype has been linked with differential immune responses to infectious disease and cancer. However, the clinical relevance of germline HLA-mediated immunity in gastrointestinal (GI) cancer remains elusive. Methods This study retrospectively analyzed the genomic profiling data from 84 metastatic GI cancer patients treated with immune checkpoint blockade (ICB) recruited from Peking University Cancer Hospital (PUCH). A publicly available dataset from the Memorial Sloan Kettering (MSK) Cancer Center (MSK GI cohort) was employed as the validation cohort. For the PUCH cohort, we performed HLA genotyping by whole exome sequencing (WES) analysis on the peripheral blood samples from all patients. Tumor tissues from 76 patients were subjected to WES analysis and immune oncology-related RNA profiling. We studied the associations of two parameters of germline HLA as heterozygosity and evolutionary divergence (HED, a quantifiable measure of HLA-I evolution) with the clinical outcomes of patients in both cohorts. Results Our data showed that neither HLA heterozygosity nor HED at the HLA-A/HLA-C locus correlated with the overall survival (OS) in the PUCH cohort. Interestingly, in both the PUCH and MSK GI cohorts, patients with high HLA-B HED showed a better OS compared with low HLA-B HED subgroup. Of note, a combinatorial biomarker of HLA-B HED and tumor mutational burden (TMB) may better stratify potential responders. Furthermore, patients with high HLA-B HED were characterized with a decreased prevalence of multiple driver gene mutations and an immune-inflamed phenotype. Conclusions Our results unveil how HLA-B evolutionary divergence influences the ICB response in patients with GI cancers, supporting its potential utility as a combinatorial biomarker together with TMB for patient stratification in the future.


Sign in / Sign up

Export Citation Format

Share Document