scholarly journals A novel missense mutation in the gene encoding major intrinsic protein (MIP) in a Giant panda with unilateral cataract formation

BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Chao Bai ◽  
Yuyan You ◽  
Xuefeng Liu ◽  
Maohua Xia ◽  
Wei Wang ◽  
...  

Abstract Background Cataracts are defects of the lens that cause progressive visual impairment and ultimately blindness in many vertebrate species. Most cataracts are age-related, but up to one third have an underlying genetic cause. Cataracts are common in captive zoo animals, but it is often unclear whether these are congenital or acquired (age-related) lesions. Results Here we used a functional candidate gene screening approach to identify mutations associated with cataracts in a captive giant panda (Ailuropoda melanoleuca). We screened 11 genes often associated with human cataracts and identified a novel missense mutation (c.686G > A) in the MIP gene encoding major intrinsic protein. This is expressed in the lens and normally accumulates in the plasma membrane of lens fiber cells, where it plays an important role in fluid transport and cell adhesion. The mutation causes the replacement of serine with asparagine (p.S229N) in the C-terminal tail of the protein, and modeling predicts that the mutation induces conformational changes that may interfere with lens permeability and cell–cell interactions. Conclusion The c.686G > A mutation was found in a captive giant panda with a unilateral cataract but not in 18 controls from diverse regions in China, suggesting it is most likely a genuine disease-associated mutation rather than a single-nucleotide polymorphism. The mutation could therefore serve as a new genetic marker to predict the risk of congenital cataracts in captive giant pandas.

2020 ◽  
Author(s):  
Chao Bai ◽  
Yuyan You ◽  
Xuefeng Liu ◽  
Maohua Xia ◽  
Wei Wang ◽  
...  

Abstract Background: Cataracts are defects of the lens that cause progressive visual impairment and ultimately blindness in many vertebrate species. Most cataracts are age-related, but up to one third have an underlying genetic cause. Cataracts are common in captive zoo animals, but it is often unclear whether these are congenital or acquired (age-related) lesions. Results: Here we used a functional candidate gene screening approach to identify mutations associated with cataracts in a captive giant panda (Ailuropoda melanoleuca). We screened 11 genes often associated with human cataracts and identified a novel missense mutation (c.686G>A) in the MIP gene encoding major intrinsic protein. This is expressed in the lens and normally accumulates in the plasma membrane of lens fiber cells, where it plays an important role in fluid transport and cell adhesion. The mutation causes the replacement of serine with asparagine (p.S229N) in the C-terminal tail of the protein, and modeling predicts that the mutation induces conformational changes that may interfere with lens permeability and cell–cell interactions.Conclusion: The c.686G>A mutation was found in a captive giant panda with a unilateral cataract but not in 18 controls from diverse regions in China, suggesting it is most likely a genuine disease-associated mutation rather than a single-nucleotide polymorphism. The mutation could therefore serve as a new genetic marker to predict the risk of congenital cataracts in captive giant pandas.


2020 ◽  
Author(s):  
Chao Bai ◽  
Yuyan You ◽  
Xuefeng Liu ◽  
Maohua Xia ◽  
Wei Wang ◽  
...  

Abstract Background : Cataracts are defects of the lens that cause progressive visual impairment and ultimately blindness in many vertebrate species. Most cataracts are age-related, but up to one third have an underlying genetic cause. Cataracts are common in captive zoo animals, but it is often unclear whether these are congenital or sporadic (age-related) lesions.Results: Here we used a functional candidate gene-screening approach to identify mutations associated with cataracts in a captive giant panda ( Ailuropoda melanoleuca ). We identified a novel missense mutation ( c.686G>A) in the MIP gene encoding major intrinsic protein, which is expressed in the lens and normally accumulates in the plasma membrane of lens fiber cells, where it plays an important role in fluid transport and cell adhesion. The mutation causes the replacement of serine with asparagine ( p.229S>N ) in the C-terminal tail of the protein, and modeling revealed that mutation-induced conformational changes may interfere with lens permeability and cell–cell interactions.Conclusions: The mutation was not found in healthy pandas, suggesting it could serve as a new informative marker to predict the risk of congenital cataracts in captive giant pandas.


2020 ◽  
Author(s):  
chao bai ◽  
Yuyan You ◽  
Xuefeng Liu ◽  
Maohua Xia ◽  
Wei Wang ◽  
...  

Abstract Background: Cataracts are defects of the lens that cause progressive visual impairment and ultimately blindness in many vertebrate species. Most cataracts are age-related, but up to one third have an underlying genetic cause. Cataracts are common in captive zoo animals, but it is often unclear whether these are congenital or sporadic acquired (age-related) lesions. Results: Here we used a functional candidate gene- screening approach to identify mutations associated with cataracts in a captive giant panda (Ailuropoda melanoleuca). We screened 11 genes often associated with human cataracts and identified a novel missense mutation (c.686G>A) in the MIP gene encoding major intrinsic protein. , whichThis is expressed in the lens and normally accumulates in the plasma membrane of lens fiber cells, where it plays an important role in fluid transport and cell adhesion. The mutation causes the replacement of serine with asparagine (p.229S>Np.S229N) in the C-terminal tail of the protein, and modeling revealed predicts that the mutation- induced induces conformational changes that may interfere with lens permeability and cell–cell interactions. Conclusion: The c.686G>A mutation was found in a captive giant panda with a unilateral cataract but not in 18 controls from diverse regions of in China, suggesting that c.686G>Ait is likely to bemost likely a genuine disease-causing associated mutation rather than a single-nucleotide polymorphism 5 regions was used in this research. Conclusions: The c.686G>A mutation was not found in healthy pandas, suggesting itThe mutation could therefore serve as a new genetic marker to predict the risk of congenital cataracts in captive giant pandas.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yuyan You ◽  
Chao Bai ◽  
Xuefeng Liu ◽  
Maohua Xia ◽  
Yanqiang Yin ◽  
...  

AbstractCataracts are a common cause of visual impairment and blindness in mammals. They are usually associated with aging, but approximately one third of cases have a significant genetic component. Cataracts are increasingly prevalent among aging populations of captive giant pandas (Ailuropoda melanoleuca) and it is therefore important to identify genetic determinants that influence the likelihood of cataract development in order to distinguish between congenital and age-related disease. Here we screened for cataract-related genetic effects using a functional candidate gene approach combined with bioinformatics to identify the underlying genetic defect in a giant panda with congenital cataracts. We identified a missense mutation in exon 10 of the HSF4 gene encoding heat shock transcription factor 4. The mutation causes the amino acid substitution R377W in a highly conserved segment of the protein between the isoform-specific and downstream hydrophobic regions. Predictive modeling revealed that the substitution is likely to increase the hydrophobicity of the protein and disrupt interactions with spatially adjacent amino acid side chains. The mutation was not found in 13 unaffected unrelated animals but was found in an unrelated animal also diagnosed with senile congenital cataract. The novel missense mutation in the HSF4 gene therefore provides a potential new genetic determinant that could help to predict the risk of cataracts in giant pandas.


2020 ◽  
Vol 48 (7) ◽  
pp. 996-998
Author(s):  
Wen Sun ◽  
Jiawei Xu ◽  
Yan Sheng ◽  
Yangshun Gu ◽  
Chixin Du

2018 ◽  
Vol 13 (5) ◽  
pp. 536-552 ◽  
Author(s):  
Ankush Ashok Saddhe ◽  
Shweta ◽  
Kareem A. Mosa ◽  
Kundan Kumar ◽  
Manoj Prasad ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document