scholarly journals Buffalo sperm surface proteome profiling reveals an intricate relationship between innate immunity and reproduction

BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Vipul Batra ◽  
Vanya Bhushan ◽  
Syed Azmal Ali ◽  
Parul Sarwalia ◽  
Ankit Pal ◽  
...  

Abstract Background Low conception rate (CR) despite insemination with morphologically normal spermatozoa is a common reproductive restraint that limits buffalo productivity. This accounts for a significant loss to the farmers and the dairy industry, especially in agriculture-based economies. The immune-related proteins on the sperm surface are known to regulate fertility by assisting the spermatozoa in their survival and performance in the female reproductive tract (FRT). Regardless of their importance, very few studies have specifically catalogued the buffalo sperm surface proteome. The study was designed to determine the identity of sperm surface proteins and to ascertain if the epididymal expressed beta-defensins (BDs), implicated in male fertility, are translated and applied onto buffalo sperm surface along with other immune-related proteins. Results The raw mass spectra data searched against an in-house generated proteome database from UniProt using Comet search engine identified more than 300 proteins on the ejaculated buffalo sperm surface which were bound either by non-covalent (ionic) interactions or by a glycosylphosphatidylinositol (GPI) anchor. The singular enrichment analysis (SEA) revealed that most of these proteins were extracellular with varied binding activities and were involved in either immune or reproductive processes. Flow cytometry using six FITC-labelled lectins confirmed the prediction of glycosylation of these proteins. Several beta-defensins (BDs), the anti-microbial peptides including the BuBD-129 and 126 were also identified amongst other buffalo sperm surface proteins. The presence of these proteins was subsequently confirmed by RT-qPCR, immunofluorescence and in vitro fertilization (IVF) experiments. Conclusions The surface of the buffalo spermatozoa is heavily glycosylated because of the epididymal secreted (glyco) proteins like BDs and the GPI-anchored proteins (GPI-APs). The glycosylation pattern of buffalo sperm-surface, however, could be perturbed in the presence of elevated salt concentration or incubation with PI-PLC. The identification of numerous BDs on the sperm surface strengthens our hypothesis that the buffalo BDs (BuBDs) assist the spermatozoa either in their survival or in performance in the FRT. Our results suggest that BuBD-129 is a sperm-surface BD that could have a role in buffalo sperm function. Further studies elucidating its exact physiological function are required to better understand its role in the regulation of male fertility.

2021 ◽  
Author(s):  
Vipul Batra ◽  
Vanya Bhushan ◽  
Syed Ali ◽  
Parul Sarwalia ◽  
Subhash Solanki ◽  
...  

Abstract BackgroundLow conception rate (CR) despite insemination with morphologically normal spermatozoa is a common reproductive restraint which limits buffalo productivity. This accounts for a significant loss to the farmers and the dairy industry, especially in agriculture-based economies. The immune-related proteins on the sperm surface are known to regulate fertility by assisting the spermatozoa in their survival and performance in the female reproductive tract (FRT). Regardless of their importance, very few studies have specifically catalogued the buffalo sperm surface proteome. The study was designed to determine the identity of sperm surface proteins and to ascertain if the epididymal expressed beta-defensins (BDs), implicated in male fertility, are translated and applied onto buffalo sperm surface along with other immune-related proteins. ResultsThe raw mass spectra data searched against in-house generated proteome database from UniProt using Comet search engine identified more than 300 proteins on the ejaculated buffalo sperm surface which were bound either by non-covalent (ionic) interactions or by a GPI-anchor. The singular enrichment analysis (SEA) revealed that most of these proteins were extracellular with varied binding activities and were involved in either immune or reproductive processes. Flow cytometry using six FITC-labelled lectins confirmed the prediction of glycosylation of these proteins. Several beta-defensins (BDs), the anti-microbial peptides including the BuBD-129 and 126 were also identified amongst the buffalo sperm surface proteins. The presence of these proteins was confirmed by immunocytochemistry and IVF experiments. Conclusions The surface of the buffalo spermatozoa is heavily glycosylated because of the epididymal secreted glycoproteins like BDs and the GPI-anchored proteins. The glycosylation pattern, however, could be perturbed in the presence of elevated salt concentration or incubation with PI-PLC. The identification of numerous BuBDs on the sperm surface strengthens our hypothesis that these BDs assist the buffalo spermatozoa either in their survival or in performance in the FRT. Our results suggest that BuBD-129 is a sperm-surface BD which could have a role in buffalo sperm function. Further studies elucidating its exact physiological function are required to better understand its roles in the regulation of male fertility.


Reproduction ◽  
2009 ◽  
Vol 138 (1) ◽  
pp. 33-43 ◽  
Author(s):  
Roberto Gualtieri ◽  
Valentina Mollo ◽  
Gennaro Duma ◽  
Riccardo Talevi

Oviductal fluid molecules, such as sulphated glycosaminoglycans and disulphide-reductants, may represent periovulatory signals for the release of spermatozoa from the oviductal reservoir in the bovine species. Disulphide-reductants release spermatozoa through the reduction of sperm-surface disulphides to sulphhydryls (SH). Herein, we studied sperm-surface protein SH through labelling with maleimidylpropionyl biocytin in the initial sperm suspension, in the subpopulations able and unable to adhere to the in vitro cultured oviductal epithelium, and in spermatozoa released either through the disulphide-reductant penicillamine (PEN) or the sulphated glycosaminoglycan heparin (HEP). Adhesion assays were performed to study the ability of released spermatozoa to readhere to the oviductal epithelium. Results showed that the level of SH in sperm-surface proteins was: 1) low in adhering spermatozoa; 2) high in spermatozoa unable to adhere; and 3) markedly increased in released spermatozoa. Adhesion assays showed that: 1) PEN-released spermatozoa promptly recovered adhesion after removal of the disulphide-reductant and could be released again in response to PEN; 2) conversely, a limited number of HEP-released spermatozoa was able to readhere to the oviductal epithelium and this ability was not affected by HEP removal. Recovery of adhesion was associated to reoxidation of sperm-surface protein SH and to the reversal of capacitation. In conclusion, redox modulation of sperm-surface protein SH is involved in the release of spermatozoa adhering to the oviduct in vitro; the reversible action of disulphide-reductants might be responsible for intermittent phases of adhesions and releases; and the irreversible action of HEP indicates that it may represent a terminal releasing signal.


2008 ◽  
Vol 107 (3-4) ◽  
pp. 304-305 ◽  
Author(s):  
A.F.C. Andrade ◽  
F.G. Zaffalon ◽  
G.K.F. Merighe ◽  
J. Nascimento ◽  
O.F.B. Tarragó ◽  
...  

2020 ◽  
Vol 102 (5) ◽  
pp. 1033-1044
Author(s):  
Dan Wang ◽  
Liping Cheng ◽  
Wenjuan Xia ◽  
Xiaofei Liu ◽  
Yueshuai Guo ◽  
...  

Abstract Fertilization is one of the fundamental biological processes, but so far, we still do not have a full understanding of the underlying molecular mechanism. We have identified a human acrosome protein, LY6/PLAUR domain containing 4 (LYPD4), expressed specifically in human testes and sperm, and conserved within mammals. Mouse Lypd4, also specific to the testis and sperm, is essential for male fertility. LYPD4 protein first appeared in round spermatids during acrosome biogenesis and became part of acrosomes during spermatogenesis and in mature sperm. Lypd4 knockout mice are infertile with normal sperm number and motility. Mutant sperm, however, failed to reach oviduct during sperm migration inside the female reproductive tract, leading to fertilization failure and infertility. In addition, Lypd4 mutant sperms were unable to fertilize denuded egg via IVF (in vitro fertilization) but could fertilize eggs within intact Cumulus-Oocyte Complex, supporting an additional role in sperm-zona interaction. Out of more than five thousand spermatozoa proteins identified by mass spectrometry analysis, only a small subset of proteins (26 proteins) was changed in the absence of LYPD4, revealing a whole proteome picture of mutant sperm defective in sperm migration and sperm-zona binding. ADAM3, a key component of fertilization complex, as well as other sperm ADAM proteins are significantly reduced. We hence propose that LYPD4 plays an essential role in mammalian fertilization, and further investigation of its function and its interaction with other sperm membrane complexes may yield insights into human fertilization and novel strategy to improve IVF success.


Author(s):  
V?ra Jon�kov� ◽  
Pavla Ma?�skov� ◽  
Marek Kraus ◽  
Ji?� Liberda ◽  
Marie Tich�

Sign in / Sign up

Export Citation Format

Share Document