scholarly journals Increased expression of pathological markers in Parkinson’s disease dementia post-mortem brains compared to dementia with Lewy bodies

2022 ◽  
Vol 23 (1) ◽  
Author(s):  
Haitao Tu ◽  
Zhi Wei Zhang ◽  
Lifeng Qiu ◽  
Yuning Lin ◽  
Mei Jiang ◽  
...  

Abstract Background Parkinson’s disease (PD) and dementia with Lewy bodies (DLB) are common age-related neurodegenerative diseases comprising Lewy body spectrum disorders associated with cortical and subcortical Lewy body pathology. Over 30% of PD patients develop PD dementia (PDD), which describes dementia arising in the context of established idiopathic PD. Furthermore, Lewy bodies frequently accompany the amyloid plaque and neurofibrillary tangle pathology of Alzheimer’s disease (AD), where they are observed in the amygdala of approximately 60% of sporadic and familial AD. While PDD and DLB share similar pathological substrates, they differ in the temporal onset of motor and cognitive symptoms; however, protein markers to distinguish them are still lacking. Methods Here, we systematically studied a series of AD and PD pathogenesis markers, as well as mitochondria, mitophagy, and neuroinflammation-related indicators, in the substantia nigra (SN), temporal cortex (TC), and caudate and putamen (CP) regions of human post-mortem brain samples from individuals with PDD and DLB and condition-matched controls. Results We found that p-APPT668 (TC), α-synuclein (CP), and LC3II (CP) are all increased while the tyrosine hydroxylase (TH) (CP) is decreased in both PDD and DLB compared to control. Also, the levels of Aβ42 and DD2R, IBA1, and p-LRRK2S935 are all elevated in PDD compared to control. Interestingly, protein levels of p-TauS199/202 in CP and DD2R, DRP1, and VPS35 in TC are all increased in PDD compared to DLB. Conclusions Together, our comprehensive and systematic study identified a set of signature proteins that will help to understand the pathology and etiology of PDD and DLB at the molecular level.

2017 ◽  
Author(s):  
Yasmine Y. Fathy ◽  
Frank Jan de Jong ◽  
Anne-Marie van Dam ◽  
Annemieke J.M. Rozemuller ◽  
Wilma D.J. van de Berg

AbstractThe insular cortex is a heterogeneous and widely connected brain region. It plays a role in autonomic, cognitive, emotional and somatosensory functions. Its complex and unique cytoarchitecture includes a periallocortical agranular, pro-isocortical dysgranular, and isocortical granular sub-regions. In Parkinson’s disease (PD), the insula shows α-synuclein inclusions in advanced stages of the disease and its atrophy correlates with cognitive deficits. However, little is known regarding its regional neuropathological characteristics and vulnerability in Lewy body diseases. The aim of this study is to assess the distribution pattern of α-synuclein pathology in the insular sub-regions and the selective vulnerability of its different cell types in PD and dementia with Lewy bodies (DLB). Human post-mortem insular tissues from 10 donors with incidental Lewy body disease (iLBD), PD, DLB, and age-matched controls were immunostained for α-synuclein and glial fibrillary acid protein (GFAP). Results showed that a decreasing gradient of α-synuclein pathology was present from agranular to granular sub-regions in iLBD, PD and PD with dementia (PDD) donors. The agranular insula was heavily inflicted, revealing various α-synuclein immunoreactive morphological structures, predominantly Lewy neurites (LNs), and astroglial synucleinopathy. While dysgranular and granular sub-regions showed a decreasing gradient of inclusions and more Lewy bodies (LBs) in deeper layers. In DLB, this gradient was less pronounced and severe pathology was observed in the granular insula compared to PDD and regardless of disease stage. Protoplasmic astrocytes showed α-synuclein inclusions and severe degenerative changes increasing with disease severity. While few von Economo neurons (VENs) in the fronto-insular region revealed inclusions, particularly in PDD patients. Our study reports novel findings on the differential involvement of the insular sub-regions in PD and particular involvement of the agranular sub-region, VENs and astrocytes. Thus, the differential cellular architecture of the insular sub-regions portrays the topographic variation and vulnerability to α-synuclein pathology in Lewy body diseases.


Author(s):  
Richard Camicioli ◽  
Nancy Fisher

Dementia occurs in up to 30% of people with Parkinson's disease and is a major cause of disability. Pathologically, Parkinson's dementia, where dementia follows the onset of parkinsonism by at least one year, overlaps with dementia with Lewy bodies. We review the functional impact, definitions, neuropsychology, epidemiology and pathophysiology of Parkinson's dementia, dementia with Lewy bodies and their overlap. Associated psychiatric and imaging findings are also considered. Lastly, current and emerging approaches to assessment and treatment in patients with these Lewy body associated dementias are presented.


BMC Neurology ◽  
2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Hisayoshi Oka ◽  
Tadashi Umehara ◽  
Atsuo Nakahara ◽  
Hiromasa Matsuno

Abstract Background Cognitive impairment may be correlated with cardiovascular dysautonomia, including blood pressure (BP) dysregulation, in Parkinson’s disease (PD), but the association between these factors in dementia with Lewy bodies (DLB) is uncertain. This study aimed to clarify whether cardiovascular dysautonomia had an influence on cognitive function in Lewy body disease or not. Methods Ninty-nine patients with de novo PD (n = 75) and DLB (n = 24) were evaluated using the Mini-Mental State Examination (MMSE) and Frontal Assessment Battery (FAB). Cardiac 123I-metaiodobenzylguanidine (MIBG) scintigraphy, orthostatic hypotension (OH), supine hypertension (SH), postprandial hypotension (PPH), nocturnal BP fall in 24-h ambulatory blood pressure monitoring (ABPM) and constipation were estimated. Associations of these factors with cognitive and executive dysfunction were examined. Results In DLB, MIBG uptake was reduced and OH, PPH and SH were severely disturbed, compared to PD. The nocturnal BP fall in ABPM was lower in DLB, and the failure of nocturnal BP fall in PD was associated with MMSE, after adjustment for other clinical features. FAB was significantly associated nocturnal BP fall, age and SH in PD, but no significant correlations among factors were found for DLB. Conclusion The significant association between nocturnal BP dysregulation and cognitive or executive decline in PD might be due to impaired microvascular circulation or invasion of α-synuclein in the CNS. The lack of a correlation of BP insufficiency with cognitive impairment in DLB suggests initial involvement of Lewy body pathology in the neocortex, regardless of Lewy body invasion of the autonomic nervous system.


Author(s):  
Elijah Mak ◽  
Antonina Kouli ◽  
Negin Holland ◽  
Nicolas Nicastro ◽  
George Savulich ◽  
...  

Abstract While [18F]-AV-1451 was developed as a positron emission tomography (PET) radiotracer with high affinity for hyperphosphorylated tau, it has been proposed that loss of “off-target” [18F]-AV-1451 binding to neuromelanin in the substantia nigra could be a surrogate marker of Lewy body diseases. [18F]-AV-1451 binding was measured in the substantia nigra of patients with Parkinson’s disease (n = 35), dementia with Lewy bodies (n = 10) and separate control groups (n = 37; n = 14). Associations with motor symptoms, cognition, and disease duration were evaluated using linear regression models. The dementia with Lewy bodies group had significantly reduced substantia nigra [18F]-AV-1451 binding compared to controls after adjusting for age (p < 0.05). However, there were no significant differences in substantia nigra [18F]-AV-1451 binding between Parkinson’s disease and controls. Substantia nigra [18F]-AV-1451 binding was not associated with age, disease duration, Movement Disorders Society—Unified Parkinson’s Disease Rating Scale and cognitive scores in dementia with Lewy bodies and Parkinson’s disease groups. Despite the reduction of substantia nigra [18F]-AV-1451 binding in dementia with Lewy bodies, these findings suggest that substantia nigra [18F]-AV-1451 binding has no value as a diagnostic marker in early Parkinson’s disease. Further investigations in longitudinal cohorts are warranted.


Sign in / Sign up

Export Citation Format

Share Document