scholarly journals Transcriptome analysis of Pará rubber tree (H. brasiliensis) seedlings under ethylene stimulation

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Yoshimi Nakano ◽  
Nobutaka Mitsuda ◽  
Kohei Ide ◽  
Teppei Mori ◽  
Farida Rosana Mira ◽  
...  

Abstract Background Natural rubber (cis-1,4-polyioprene, NR) is an indispensable industrial raw material obtained from the Pará rubber tree (H. brasiliensis). Natural rubber cannot be replaced by synthetic rubber compounds because of the superior resilience, elasticity, abrasion resistance, efficient heat dispersion, and impact resistance of NR. In NR production, latex is harvested by periodical tapping of the trunk bark. Ethylene enhances and prolongs latex flow and latex regeneration. Ethephon, which is an ethylene-releasing compound, applied to the trunk before tapping usually results in a 1.5- to 2-fold increase in latex yield. However, intense mechanical damage to bark tissues by excessive tapping and/or over-stimulation with ethephon induces severe oxidative stress in laticifer cells, which often causes tapping panel dryness (TPD) syndrome. To enhance NR production without causing TPD, an improved understanding of the molecular mechanism of the ethylene response in the Pará rubber tree is required. Therefore, we investigated gene expression in response to ethephon treatment using Pará rubber tree seedlings as a model system. Results After ethephon treatment, 3270 genes showed significant differences in expression compared with the mock treatment. Genes associated with carotenoids, flavonoids, and abscisic acid biosynthesis were significantly upregulated by ethephon treatment, which might contribute to an increase in latex flow. Genes associated with secondary cell wall formation were downregulated, which might be because of the reduced sugar supply. Given that sucrose is an important molecule for NR production, a trade-off may arise between NR production and cell wall formation for plant growth and for wound healing at the tapping panel. Conclusions Dynamic changes in gene expression occur specifically in response to ethephon treatment. Certain genes identified may potentially contribute to latex production or TPD suppression. These data provide valuable information to understand the mechanism of ethylene stimulation, and will contribute to improved management practices and/or molecular breeding to attain higher yields of latex from Pará rubber trees.

1994 ◽  
Vol 67 (3) ◽  
pp. 537-548 ◽  
Author(s):  
Abdul Aziz S. A. Kadir

Abstract This paper will attempt to highlight the various advances made to date in the production and processing of natural rubber (NR). The commercially planted rubber tree, Hevea brasiliensis, can yield as high as 3,000 kg of rubber per hectare in contrast to the 500 kg rubber per hectare obtained from the wild Amazonian rubber trees. The high yield of commercial rubber trees is attributed to the successful breeding program, efficient development of agronomic and crop management practices and proper exploitation systems. Today, the Hevea brasiliensis trees not only contribute to the supply of world natural rubber, but also to the ever increasing demand of tropical timber. Latex extracted from the rubber tree is processed to meet the specific requirements of the consumers. In the area of processing, emphasis is on the production of NR as an industrial raw material with improved quality and consistency. Efforts are also placed on processing efficiency, optimum product mix and production of value added modified NR such as epoxidized and deproteinized NR. The processing activities also take into consideration the control of processing effluent with appropriate effluent treatments or conversion of effluent to useful materials.


1991 ◽  
Vol 82 (2) ◽  
pp. 219-224 ◽  
Author(s):  
Barbro S. M. Ingemarsson ◽  
Leif Eklund ◽  
Lennart Eliasson

2014 ◽  
Vol 48 (4) ◽  
pp. 389-397
Author(s):  
Liu Lin ◽  
Quan Xianqing ◽  
Zhao Xiaomei ◽  
Huang Lihua ◽  
Feng Shangcai ◽  
...  

2021 ◽  
Vol 22 (7) ◽  
pp. 3560
Author(s):  
Ruixue Xiao ◽  
Chong Zhang ◽  
Xiaorui Guo ◽  
Hui Li ◽  
Hai Lu

The secondary wall is the main part of wood and is composed of cellulose, xylan, lignin, and small amounts of structural proteins and enzymes. Lignin molecules can interact directly or indirectly with cellulose, xylan and other polysaccharide molecules in the cell wall, increasing the mechanical strength and hydrophobicity of plant cells and tissues and facilitating the long-distance transportation of water in plants. MYBs (v-myb avian myeloblastosis viral oncogene homolog) belong to one of the largest superfamilies of transcription factors, the members of which regulate secondary cell-wall formation by promoting/inhibiting the biosynthesis of lignin, cellulose, and xylan. Among them, MYB46 and MYB83, which comprise the second layer of the main switch of secondary cell-wall biosynthesis, coordinate upstream and downstream secondary wall synthesis-related transcription factors. In addition, MYB transcription factors other than MYB46/83, as well as noncoding RNAs, hormones, and other factors, interact with one another to regulate the biosynthesis of the secondary wall. Here, we discuss the biosynthesis of secondary wall, classification and functions of MYB transcription factors and their regulation of lignin polymerization and secondary cell-wall formation during wood formation.


2020 ◽  
Vol 50 (2) ◽  
pp. 176-186
Author(s):  
Yi MAN ◽  
RuiLi LI ◽  
YuFen BU ◽  
Na SUN ◽  
YanPing JING ◽  
...  

2019 ◽  
Author(s):  
Philippe Golfier ◽  
Faride Unda ◽  
Emily K. Murphy ◽  
Jianbo Xie ◽  
Feng He ◽  
...  

AbstractCell wall recalcitrance is a major constraint for the exploitation of lignocellulosic biomass as renewable resource for energy and bio-based products. Transcriptional regulators of the lignin biosynthetic pathway represent promising targets for tailoring lignin content and composition in plant secondary cell walls. A wealth of research in model organisms has revealed that transcriptional regulation of secondary cell wall formation is orchestrated by a hierarchical transcription factor (TF) network with NAC TFs as master regulators and MYB factors in the lower tier regulators. However, knowledge about the transcriptional regulation of lignin biosynthesis in lignocellulosic feedstocks, such as Miscanthus, is limited. Here, we characterized two Miscanthus MYB TFs, MsSCM1 and MsMYB103, and compared their transcriptional impact with that of the master regulator MsSND1. In Miscanthus leaves MsSCM1 and MsMYB103 are expressed at growth stages associated with lignification. Ectopic expression of MsSCM1 and MsMYB103 in tobacco leaves was sufficient to trigger secondary cell wall deposition with distinct sugar and lignin composition. Moreover, RNA-seq analysis revealed that the transcriptional responses to MsSCM1 and MsMYB103 overexpression showed extensive overlap with the response to MsSND1, but were distinct from each other, underscoring the inherent complexity of secondary cell wall formation. Together, MsSCM1 and MsMYB103 represent interesting targets for manipulations of lignin content and composition in Miscanthus towards tailored biomass.


Sign in / Sign up

Export Citation Format

Share Document