scholarly journals Reduced regional flow in the left ventricle after anterior acute myocardial infarction: a case control study using 4D flow MRI

2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Philip A. Corrado ◽  
Jacob A. Macdonald ◽  
Christopher J. François ◽  
Niti R. Aggarwal ◽  
Jonathan W. Weinsaft ◽  
...  

Abstract Background Acute myocardial infarction (AMI) alters left ventricular (LV) hemodynamics, resulting in decreased global LV ejection fraction and global LV kinetic energy. We hypothesize that anterior AMI effects localized alterations in LV flow and developed a regional approach to analyze these local changes with 4D flow MRI. Methods 4D flow cardiac magnetic resonance (CMR) data was compared between 12 anterior AMI patients (11 males; 66 ± 12yo; prospectively acquired in 2016–2017) and 19 healthy volunteers (10 males; 40 ± 16yo; retrospective from 2010 to 2011 study). The LV cavity was contoured on short axis cine steady-state free procession CMR and partitioned into three regions: base, mid-ventricle, and apex. 4D flow data was registered to the short axis segmentation. Peak systolic and diastolic through-plane flows were compared region-by-region between groups using linear models of flow with age, sex, and heart rate as covariates. Results Peak systolic flow was reduced in anterior AMI subjects compared to controls in the LV mid-ventricle (fitted reduction = 3.9 L/min; P = 0.01) and apex (fitted reduction = 1.4 L/min; P = 0.02). Peak diastolic flow was also lower in anterior AMI subjects compared to controls in the apex (fitted reduction = 2.4 L/min; P = 0.01). Conclusions A regional method to analyze 4D LV flow data was applied in anterior AMI patients and controls. Anterior AMI patients had reduced regional flow relative to controls.

2019 ◽  
Author(s):  
Philip A Corrado ◽  
Jacob A. Macdonald ◽  
Christopher J. Francois ◽  
Niti R. Aggarwal ◽  
Jonathan W. Weinsaft ◽  
...  

Abstract Background: Acute myocardial infarction (AMI) alters left ventricular (LV) hemodynamics, resulting in decreased global LV ejection fraction and global LV kinetic energy. We hypothesize that anterior AMI effects localized alterations in LV flow and developed a regional approach to analyze these local changes with 4D flow MRI. Methods: 4D flow cardiac magnetic resonance (CMR) data was compared between 12 anterior AMI patients (11 males; 66±12yo; prospectively acquired in 2016-2017) and 19 healthy volunteers (10 males; 40±16yo; retrospective from 2010-2011 study). The LV cavity was contoured on short axis cine steady-state free procession CMR and partitioned into three regions: base, mid-ventricle, and apex. 4D flow data was registered to the short axis segmentation. Peak systolic and diastolic through-plane flows were compared region-by-region between groups using linear models of flow with age, sex, and heart rate as covariates. Results: Peak systolic flow was reduced in anterior AMI subjects compared to controls in the LV mid-ventricle (fitted reduction = 3.9 L/min; P=0.01) and apex (fitted reduction = 1.4 L/min; P=0.02). Peak diastolic flow was also lower in anterior AMI subjects compared to controls in the apex (fitted reduction = 2.4 L/min; P=0.01). Conclusions: A regional method to analyze 4D LV flow data was applied in anterior AMI patients and controls. Anterior AMI patients had reduced regional flow relative to controls.


2020 ◽  
Author(s):  
Philip A Corrado ◽  
Jacob A. Macdonald ◽  
Christopher J. Francois ◽  
Niti R. Aggarwal ◽  
Jonathan W. Weinsaft ◽  
...  

Abstract Background : Acute myocardial infarction (AMI) alters left ventricular (LV) hemodynamics, resulting in decreased global LV ejection fraction and global LV kinetic energy. We hypothesize that anterior AMI effects localized alterations in LV flow and developed a regional approach to analyze these local changes with 4D flow MRI. Methods : 4D flow cardiac magnetic resonance (CMR) data was compared between 12 anterior AMI patients (11 males; 66±12yo; prospectively acquired in 2016-2017) and 19 healthy volunteers (10 males; 40±16yo; retrospective from 2010-2011 study). The LV cavity was contoured on short axis cine steady-state free procession CMR and partitioned into three regions: base, mid-ventricle, and apex. 4D flow data was registered to the short axis segmentation. Peak systolic and diastolic through-plane flows were compared region-by-region between groups using linear models of flow with age, sex, and heart rate as covariates. Results : Peak systolic flow was reduced in anterior AMI subjects compared to controls in the LV mid-ventricle (fitted reduction = 3.9 L/min; P=0.01) and apex (fitted reduction = 1.4 L/min; P=0.02). Peak diastolic flow was also lower in anterior AMI subjects compared to controls in the apex (fitted reduction = 2.4 L/min; P=0.01). Conclusions : A regional method to analyze 4D LV flow data was applied in anterior AMI patients and controls. Anterior AMI patients had reduced regional flow relative to controls.


2019 ◽  
Author(s):  
Philip A Corrado ◽  
Jacob A. Macdonald ◽  
Christopher J. Francois ◽  
Niti R. Aggarwal ◽  
Jonathan W. Weinsaft ◽  
...  

Abstract Purpose Acute myocardial infarction (AMI) alters left ventricular (LV) hemodynamics, resulting in decreased global LV ejection fraction and global LV kinetic energy. We hypothesize that anterior AMI effects localized alterations in LV flow and developed a regional approach to analyze these local changes with 4D flow MRI. Materials and Methods 4D flow cardiac magnetic resonance (CMR) data was compared between 12 anterior AMI patients (11 males; 66±12yo; prospectively acquired in 2016-2017) and 19 healthy volunteers (10 males; 40±16yo; retrospective from 2010-2011 study). The LV cavity was contoured on short axis cine steady-state free procession CMR and partitioned into three regions: base, mid-ventricle, and apex. 4D flow data was registered to the short axis segmentation. Peak systolic and diastolic through-plane flows were compared region-by-region between groups using linear models of flow with age, sex, and heart rate as covariates. Results Peak systolic flow was reduced in anterior AMI subjects compared to controls in the LV mid-ventricle (fitted reduction = 3.9 L/min; P=0.01) and apex (fitted reduction = 1.4 L/min; P=0.02). Peak diastolic flow was also lower in anterior AMI subjects compared to controls in the apex (fitted reduction = 2.4 L/min; P=0.01). Conclusion A regional method to analyze 4D LV flow data was applied in anterior AMI patients and controls. Anterior AMI patients had reduced flow, particularly in the LV apex, relative to controls.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Nanae Tsuchiya ◽  
Michinobu Nagao ◽  
Yumi Shiina ◽  
Shohei Miyazaki ◽  
Kei Inai ◽  
...  

AbstractWe used 4D-flow MRI to investigate circulation, an area integral of vorticity, in the main pulmonary artery (MPA) as a new hemodynamic parameter for assessing patients with a repaired Tetralogy of Fallot (TOF). We evaluated the relationship between circulation, right ventricular (RV) function and the pulmonary regurgitant fraction (PRF). Twenty patients with a repaired TOF underwent cardiac MRI. Flow-sensitive 3D-gradient sequences were used to obtain 4D-flow images. Vortex formation in the MPA was visualized, with short-axis and longitudinal vorticities calculated by software specialized for 4D flow. The RV indexed end-diastolic/end-systolic volumes (RVEDVi/RVESVi) and RV ejection fraction (RVEF) were measured by cine MRI. The PR fraction (PRF) and MPA area were measured by 2D phase-contrast MRI. Spearman ρ values were determined to assess the relationships between circulation, RV function, and PRF. Vortex formation in the MPA occurred in 15 of 20 patients (75%). The longitudinal circulation (11.7 ± 5.1 m2/s) was correlated with the RVEF (ρ = − 0.85, p = 0.0002), RVEDVi (ρ = 0.62, p = 0.03), and RVESVi (ρ = 0.76, p = 0.003) after adjusting for the MPA size. The short-axis circulation (9.4 ± 3.4 m2/s) in the proximal MPA was positively correlated with the MPA area (ρ = 0.61, p = 0.004). The relationships between the PRF and circulation or RV function were not significant. Increased longitudinal circulation in the MPA, as demonstrated by circulation analysis using 4D flow MRI, was related to RV dysfunction in patients with a repaired TOF.


Circulation ◽  
2020 ◽  
Vol 142 (Suppl_3) ◽  
Author(s):  
Jeesoo Lee ◽  
Nadia El hangouche ◽  
Liliana Ma ◽  
Michael Scott ◽  
Michael Markl ◽  
...  

Introduction: 4D flow MRI can assess transvalvular velocity, but validation against continuous wave (CW) Doppler echo is limited in high-velocity regurgitation and stenosis situations. We sought to compare 4D flow MRI and echo peak velocity using a pulsatile echo-MRI flow phantom. Materials and Methods: An MRI-compatible flow phantom with restrictive orifice situated was driven by a left ventricular assist device at 50 bpm (figure 1A). Three orifice shapes were tested: circular, elliptical and 3D-printed patient-specific mitral regurgitant orifice model of prolapse with areas of 0.5, 0.41 and 0.35 cm 2 , respectively. CW Doppler was acquired with peak velocity extracted from the profile. Retrospectively-gated 4D flow MRI was performed (spatial resolution = 2 mm isotropic, temporal resolution = 36 ms, encoding velocity = 400 cm/s). Maximal velocity magnitude was extracted volumetrically (figure 1B). An echo-mimicking profile was also obtained with a “virtual” ultrasound beam in the 4D flow data to simulate CW Doppler (figure 1C). Bland-Altman analysis was used to assess the agreement of temporal peak velocities. Results: 4D flow MRI demonstrated a centrally directed jet for the circular and elliptical orifices and an oblique jet for the prolapse orifice (figure 1B). Peak velocities were in excellent agreement between 4D flow MRI vs. echo for the circular (peak: 5.13 vs. 5.08 m/s, bias = 0.06 ± 0.66 m/s, figure 1D) and the elliptical orifice (peak: 4.95 vs. 4.79 m/s, bias = 0.07 ± 0.87 m/s, figure 1E). The prolapse orifice velocity was underestimated somewhat by MRI by ~10% (peak: 4.41 vs. 4.90 m/s, bias=0.26±1.18, figure 1F). Conclusion: 4D flow MRI can quantify high velocities like echo for simple geometries while underestimating for more complex geometry, likely due to partial volume effects. Further investigation is warranted to systematically investigate the effects of 4D flow MRI spatial and temporal resolution as well as the jet angle on velocity quantification accuracy.


2018 ◽  
Vol 34 (6) ◽  
pp. 905-920 ◽  
Author(s):  
Vivian P. Kamphuis ◽  
Jos J. M. Westenberg ◽  
Roel L. F. van der Palen ◽  
Pieter J. van den Boogaard ◽  
Rob J. van der Geest ◽  
...  

2021 ◽  
Vol 22 (Supplement_2) ◽  
Author(s):  
MM Bissell ◽  
L Mills ◽  
DGW Cave ◽  
R Foley ◽  
JP Greenwood ◽  
...  

Abstract Funding Acknowledgements Type of funding sources: Public grant(s) – National budget only. Main funding source(s): NIHR Background Pulmonary artery stenosis (PAS) occurs commonly in patients with tetralogy of fallot (ToF). Cardiac function and especially left ventricular longitudinal strain has been identified as an important prognostic factor for long term survival in ToF. The clinical relevance of unilateral PAS to long-term bi-ventricular function is poorly understood. Purpose We sought to evaluate the effect of resolving unilateral pulmonary artery obstruction on right and left ventricular performance. Methods We prospectively included 40 patients with TOF between 2016 and 2020, 20 who underwent unilateral PAS stenting and as comparison 20 who underwent surgical pulmonary valve replacement (PVR). MRI data was acquired during routine clinical care before and around 6-12 months after the procedure. 4 PAS patients attended additional research scans acquiring ventricular 4D flow MRI data. 4D flow MRI data was compared to the average kinetic energy curve of 10 age-matched healthy volunteers. Results Of the 20 patients undergoing PAS, 2 also underwent percutaneous PVR and were excluded from the comparison analysis. All patients in the PAs group showed an improvement in branch PA flow differential post procedure. Patients undergoing PAS were younger than those undergoing PVR (median 12 vs 19 years, p < 0.001). Other baseline anatomical and functional parameters including right ventricular (RV) volume indexed to body surface are (RVEDV/BSA) were comparable (pre PAS median 151 [122,170] vs pre PVR 162 [140,191]; p = 0.217). While in the PVR group the right ventricular volumes reduced in both end-diastole and end-systole, in the PAS group RV function improved due to reduced end-systolic volume with largely stable end-diastolic volumes. Changes in the left ventricle (LV) were even more interesting. In the PVR group ejection fraction improved due to an increase in end-diastolic volume with no improvement in ventricular longitudinal strain. In contrast, in the PAS group LV ejection fraction improved by a reduction in end-systolic volume and the PAS group showed a small but significant improvement in LV longitudinal strain. In addition, ¾ patients undergoing 4D flow MRI assessment showed LV kinetic energy curve more similar to the healthy volunteer averaged  LV kinetic energy curve after PAS. The 4th patient already had a near normal LV kinetic energy curve prior to PAS. Conclusion Unilateral PAS does not alter RV end-diastolic volumes but improves RV function. LV ejection fraction improvement is similar to that seen after PVR, but importantly PAS also improved LV longitudinal strain. This suggests that PAS might positively influence long term morbidity and mortality risk in ToF patients, but a larger multi-centre long term follow-up study is needed to confirm this.


2017 ◽  
Vol 48 (1) ◽  
pp. 121-131 ◽  
Author(s):  
Julia Geiger ◽  
Amir A. Rahsepar ◽  
Kenichiro Suwa ◽  
Alex Powell ◽  
Ahmadreza Ghasemiesfe ◽  
...  

2013 ◽  
Vol 15 (S1) ◽  
Author(s):  
Mohammed S ElBaz ◽  
Jos J Westenberg ◽  
Pieter J van den Boogaard ◽  
Boudewijn Lelieveldt ◽  
Rob J van der Geest

2019 ◽  
Vol 50 (3) ◽  
pp. 982-993 ◽  
Author(s):  
Kevin Bouaou ◽  
Ioannis Bargiotas ◽  
Thomas Dietenbeck ◽  
Emilie Bollache ◽  
Gilles Soulat ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document