scholarly journals Identification of two novel COL10A1 heterozygous mutations in two Chinese pedigrees with Schmid-type metaphyseal chondrodysplasia

2019 ◽  
Vol 20 (1) ◽  
Author(s):  
Lingchi Kong ◽  
Li Shi ◽  
Wenbo Wang ◽  
Rongtai Zuo ◽  
Mengwei Wang ◽  
...  

Abstract Background Schmid-type metaphyseal chondrodysplasia (MCDS) is an autosomal dominant disorder caused by COL10A1 mutations, which is characterized by short stature, waddling gait, coxa vara and bowing of the long bones. However, descriptions of the expressivity of MCDS are rare. Methods Two probands and available family members affected with MCDS were subjected to clinical and radiological examination. Genomic DNA of all affected individuals was subjected to whole-exome sequencing, and candidate mutations were verified by Sanger sequencing in all available family members and in 250 healthy donors. A spatial model of the type X collagen (α1) C-terminal noncollagenous (NC1) domain was further constructed. Results We found that the phenotype of affected family members exhibited incomplete dominance. Mutation analysis indicated that there were two novel heterozygous missense mutations, [c.1765 T > A (p.Phe589Ile)] and [c.1846A > G (p.Lys616Glu)] in the COL10A1 gene in family 1 and 2, respectively. The two novel substitution sites were highly conserved and the mutations were predicted to be deleterious by in silico analysis. Furthermore, protein modeling revealed that the two substitutions were located in the NC1 domain of collagen X (α1), which potentially impacted the trimerization of collagen X (α1) and combination with molecules in the pericellular matrix. Conclusion Two novel mutations were identified in the present study, which will facilitate diagnosis of MCDS and further expand the spectrum of the COL10A1 mutations associated with MCDS patients. In addition, our research revealed the phenomenon of incomplete dominance in MCDS.

2019 ◽  
Author(s):  
Lingchi Kong ◽  
Li Shi ◽  
Wenbo Wang ◽  
Rongtai Zuo ◽  
Mengwei Wang ◽  
...  

Abstract Background: Schmid-type metaphyseal chondrodysplasia (MCDS) is an autosomal dominant disorder caused by COL10A1 mutations, which is characterized by short stature, waddling gait, coxa vara and bowing of the long bones. However, descriptions of the expressivity of MCDS are rare. Methods: Two probands and available family members affected with MCDS were subjected to clinical and radiological examination. Genomic DNA of all affected individuals was subjected to whole-exome sequencing, and candidate mutations were verified by Sanger sequencing in all available family members and in 250 healthy donors. A spatial model of the type X collagen (α1) C-terminal noncollagenous (NC1) domain was further constructed. Results: We found that the phenotype of affected family members exhibited incomplete dominance. Mutation analysis indicated that there were two novel heterozygous missense mutations, [c.1765T>A (p.Phe589Ile)] and [c.1846A>G (p.Lys616Glu)] in the COL10A1 gene in family 1 and 2, respectively. The two novel substitution sites were highly conserved and the mutations were predicted to be deleterious by in silico analysis. Furthermore, protein modeling revealed that the two substitutions were located in the NC1 domain of collagen X (α1), which potentially impacted the trimerization of collagen X (α1) and combination with molecules in the pericellular matrix. Conclusion: Two novel mutations were identified in the present study, which will facilitate diagnosis of MCDS and further expand the spectrum of the COL10A1 mutations associated with MCDS patients. In addition, our research revealed the phenomenon of incomplete dominance in MCDS.


2019 ◽  
Author(s):  
Lingchi Kong ◽  
Li Shi ◽  
Wenbo Wang ◽  
Rongtai Zuo ◽  
Mengwei Wang ◽  
...  

Abstract Background: Schmid-type metaphyseal chondrodysplasia (MCDS) is an autosomal dominant disorder caused by COL10A1 mutations, which is characterized by short stature, waddling gait, coxa vara and bowing of the long bones. However, descriptions of the expressivity of MCDS are rare. Methods: Two probands and available family members affected with MCDS were subjected to clinical and radiological examination. Genomic DNA of all affected individuals was subjected to whole-exome sequencing, and candidate mutations were verified by Sanger sequencing in all available family members and in 250 healthy donors. A spatial model of the type X collagen (α1) C-terminal noncollagenous (NC1) domain was further constructed. Results: We found that the phenotype of affected family members exhibited incomplete dominance. Mutation analysis indicated that there were two novel heterozygous missense mutations, [c.1765T>A (p.Phe589Ile)] and [c.1846A>G (p.Lys616Glu)] in the COL10A1 gene in family 1 and 2, respectively. The two novel substitution sites were highly conserved and the mutations were predicted to be deleterious by in silico analysis. Furthermore, protein modeling revealed that the two substitutions were located in the NC1 domain of collagen X (α1), which potentially impacted the trimerization of collagen X (α1) and combination with molecules in the pericellular matrix. Conclusion: Two novel mutations were identified in the present study, which will facilitate diagnosis of MCDS and further expand the spectrum of the COL10A1 mutations associated with MCDS patients. In addition, our research revealed the phenomenon of incomplete dominance in MCDS.


2019 ◽  
Author(s):  
Lingchi Kong ◽  
Li Shi ◽  
Wenbo Wang ◽  
Rongtai Zuo ◽  
Mengwei Wang ◽  
...  

Abstract Background: Schmid-type metaphyseal chondrodysplasia (MCDS) is an autosomal dominant disorder caused by COL10A1 mutations, which is characterized by short stature, waddling gait, coxa vara and bowing of the long bones. However, descriptions of the expressivity of MCDS are rare. Methods: Two probands and available family members affected with MCDS were subjected to clinical and radiological examination. Genomic DNA of all affected individuals was subjected to whole-exome sequencing, and candidate mutations were verified by Sanger sequencing in all available family members and in 250 healthy donors. A spatial model of the type X collagen (α1) C-terminal noncollagenous (NC1) domain was further constructed. Results: We found that the phenotype of affected family members exhibited irregular dominance. Mutation analysis indicated that there were two novel heterozygous missense mutations, [c.1765T>A (p.Phe589Ile)] and [c.1846A>G (p.Lys616Glu)] in the COL10A1 gene in family 1 and 2, respectively. The two novel substitution sites were highly conserved and the mutations were predicted to be deleterious by in silico analysis. Furthermore, protein modeling revealed that the two substitutions were located in the NC1 domain of collagen X (α1), which potentially impacted the trimerization of collagen X (α1) and combination with molecules in the pericellular matrix. Conclusion: Two novel mutations were identified in the present study, which will facilitate diagnosis of MCDS and further expand the spectrum of the COL10A1 mutations associated with MCDS patients. In addition, our research revealed the phenomenon of irregular dominance in MCDS.


2019 ◽  
Author(s):  
Lingchi Kong ◽  
Li Shi ◽  
Wenbo Wang ◽  
Rongtai Zuo ◽  
Mengwei Wang ◽  
...  

Abstract Background: Schmid-type metaphyseal chondrodysplasia (MCDS) is an autosomal dominant disorder caused by COL10A1 mutations, which is characterized by short stature, waddling gait, coxa vara and bowing of the long bones. However, descriptions of the expressivity of MCDS are rare. Methods: Two probands and available family members affected with MCDS were subjected to clinical and radiological examination. Genomic DNA of all affected individuals was subjected to whole-exome sequencing, and candidate mutations were verified by Sanger sequencing in all available family members and in 250 normal control donors. A spatial model of the type X collagen (α1) C-terminal noncollagenous (NC1) domain was further constructed. Results: We found that the phenotype of affected family members exhibited irregular dominance. Mutation analysis indicated that there were two novel heterozygous missense mutations, [c.1765T>A (p.Phe589Ile)] and [c.1846A>G (p.Lys616Glu)] in the COL10A1 gene in family 1 and 2, respectively. The two novel substitution sites were highly conserved and the mutations were predicted to be deleterious by in silico analysis. Furthermore, protein modeling revealed that the two substitutions were located in the NC1 domain of collagen X (α1), which potentially impacted the trimerization of collagen X (α1) and combination with molecules in the pericellular matrix. Conclusion: Two novel mutations were identified in the present study, which will facilitate diagnosis of MCDS and further expand the spectrum of the COL10A1 mutations associated with MCDS patients. In addition, our research revealed the phenomenon of irregular dominance in MCDS.


2019 ◽  
Author(s):  
Lingchi Kong ◽  
Li Shi ◽  
Wenbo Wang ◽  
Rongtai Zuo ◽  
Mengwei Wang ◽  
...  

Abstract Background Schmid-type metaphyseal chondrodysplasia (MCDS) is an autosomal dominant disorder caused by COL10A1 mutations, which is characterized by short stature, waddling gait, coxa vara and bowing of the long bones. However, the research about unusual phenotype features of MCDS is rare. Methods Two probands and available family members affected with MCDS were subjected to clinical and radiological examination. Genomic DNA of all affected individuals underwent whole-exome sequencing, and candidate mutations were verified by Sanger sequencing in all available family members and 250 donors. Then the spatial model of type X collagen (α1) C-terminal noncollagenous (NC1) domain was further constructed. Results We found that the affected family members exhibited evident irregular dominance. Mutation analysis indicated that there were two novel heterozygous missense mutations [c.1765T>A (p.Phe589Ile)] and [c.1846A>G (p.Lys616Glu)] in the COL10A1 gene in family 1 and 2, respectively. The two novel substitution sites were highly conserved and the mutations were predicted to be remarkably deleterious in silico analysis. Furthermore, protein modeling revealed that the two substitutions located in the NC1 domain of collagen X (α1), which potentially impacted the trimerization of collagen X (α1) and combination with molecules in pericellular matrix. Conclusion Two novel mutations were identified in the present study, which facilitated to diagnose MCDS and further expanded the spectrum of the COL10A1 mutations associated with MCDS patients. In addition, our research preliminarily elaborated the phenotype features and heredity characteristics of MCDS based on the two Chinese pedigrees.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 2498-2498
Author(s):  
Shreerang Sirdesai ◽  
Kerryn Weekes ◽  
Asif Alam ◽  
Huyen A Tran ◽  
Christopher Barnes ◽  
...  

Abstract Aim: Hemophilia A (HA) is caused by abnormalities in the Factor VIII gene. Certain abnormalities correlate with disease severity. Here, we report the genotype-phenotype correlation for all Victorian HA patients. Methods: Using the Australian Bleeding Disorders Registry, Victorian HA patients were identified. All genetic testing was conducted at Southern Health. The testing algorithm is summarized in Figure 1. Mutations were compared with the list of known Factor 8 mutations on the Champ and EAHAD F8 Variant Databases. A PubMed search was undertaken for any mutations not on either database. If this too was unrevealing, the mutation was designated novel. In-silico analysis was conducted on all novel mutations using three open-access, online prediction tools: a) Mutation Taster; b) Poly-Phen 2; c) Human Splice Site Predictor. Results: 318 patients with matched clinical and genetic records were identified. 275 had known FVIII mutations and 36 novel FVIII mutations were discovered. Eight patients (3%) had no mutations identified. (Table 1) In severe HA the intron-22 inversion was the most common mutation (47/122, 38%). Missense mutations predominated in mild and moderate HA. Inhibitors were present in 44/318 patients, the majority of whom had 26/44 (59%) severe HA. 20/36 novel mutations (55%) were associated with severe HA, 12/36 (33%) with mild HA and 4/36 (11%) with a moderate HA. Novel mutations associated with non-severe phenotypes were mostly missense mutations (15/16); More diversity was seen in the novel mutations causing a severe HA with a fairly even distribution of mutations: missense (7/20), nonsense (4/20) and small deletions and insertions (8/20). One large deletion involving a 6.5kb region of exon 26, as well as one duplication of exons 7 to 9 - was seen in the severe group. In-silico analysis predicted that all novel severe HA mutations were likely to be pathogenic.Inhibitors were seen in 7 patients with novel mutations. Of the 36 novel mutations we described, 9/36 (25%) were seen in other family members - often female carriers. All 9 mutations caused a severe phenotype which is not unexpected given that the screening and testing of family members would be unlikely to take place in patients who have a mild phenotype and rarely require supportive medical care Conclusion: This study adds 36 novel mutations to the currently known FVIII haemophilic mutations. It also confirms that the frequency and correlative clinical severity of known genetic mutations in the Victorian HA cohort is similar to that described internationally. Disclosures No relevant conflicts of interest to declare.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Jiwon Jung ◽  
Joo Hoon Lee ◽  
Young Seo Park ◽  
Go Hun Seo ◽  
Changwon Keum ◽  
...  

Abstract Background This study aimed to use whole-exome sequencing (WES) to diagnose ultra-rare renal diseases and the clinical impact of such an approach on patient care. Methods Clinical, radiological, pathological, and genetic findings were reviewed in the patients and their family members. Results Nine patients from nine unrelated Korean families were included in the study and evaluated. WES identified eight different conditions in these patients, i.e., autosomal dominant tubulointerstitial kidney disease associated with UMOD mutation; recurrent urinary stones associated with APRT deficiency; Ayme-Gripp syndrome associated with MAF mutation; short rib-thoracic dysplasia associated with IFT140 mutation; renal coloboma syndrome associated with PAX2 mutations; idiopathic infantile hypercalcemia associated with CYP24A1 mutation; and hypomagnesemia associated with TRPM mutation. Eleven different mutations, including seven novel mutations, were identified, i.e., four truncating mutations, six missense mutations, and one splice-acceptor variant. After genetic confirmation, strategies for the management of the following: medications, donor selection for renal transplantation, and surveillance for extra-renal manifestations were altered. In addition, genetic counseling was provided for the patients and their family members with respect to family member screening for affected but yet unidentified patients and future reproductive planning. Conclusion As WES can effectively identify ultra-rare genetic renal diseases, facilitate the diagnosis process, and improve patient care, it is a good approach to enable a better understanding of ultra-rare conditions and for the establishment of appropriate counseling, surveillance, and management strategies.


2022 ◽  
Vol 9 ◽  
Author(s):  
Poomiporn Katanyuwong ◽  
Arthaporn Khongkraparn ◽  
Duangrurdee Wattanasirichaigoon

Left ventricular non-compaction (LVNC) is a rare and genetically heterogeneous cardiomyopathy. The disorder vastly affects infants and young children. Severe neonatal LVNC is relatively rare. The prevalence of genetic defects underlying pediatric and adult-onset LVNC is about 17–40%. Mutations of MYH7 and MYBPC3 sarcomeric genes are found in the vast majority of the positive pediatric cases. PKP2 encodes plakophilin-2, a non-sarcomeric desmosomal protein, which has multiple roles in cardiac myocytes including cell–cell adhesion, tightening gap junction, and transcriptional factor. Most of the reported PKP2 mutations are heterozygous missense and truncating variants, and they are associated with an adult-onset autosomal dominant disorder, namely arrhythmogenic right ventricular dysplasia/cardiomyopathy (ARVD/C). Homozygous PKP2 mutations have been rarely described. Herein, we present a rare case of an infant with neonatal onset of congestive heart failure owing to severe LVNC and multiple muscular VSD. Medical treatments failed to control the heart failure and the patient died at 11 months of age. Whole-exome sequencing identified a novel homozygous PKP2 variant, c.1511-1G>C, in the patient. An mRNA analysis revealed aberrant transcript lacking exon 7, which was predicted to cause a frameshift and truncated peptide (p.Gly460GlufsTer2). The heterozygous parents had normal cardiac structures and functions as demonstrated by electrocardiogram and echocardiography. Pathogenic variants of sarcomeric genes analyzed were not found in the patient. We conducted a literature review and identified eight families with biallelic PKP2 mutations. We observed that three families (our included) with null variants were linked to lethal phenotypes, while homozygous missense mutations resulted in less severe manifestations: adolescent-onset ARVD/C and childhood-onset DCM. Our data support a previous notion that severe neonatal LVNC might represent a unique entity and had distinct genetic spectrum. In conclusion, the present study has extended the phenotypes and genotypes of PKP2-related disorders and lethal LVNC.


2021 ◽  
Vol 80 (Suppl 1) ◽  
pp. 1039.1-1039
Author(s):  
A. Barinotti ◽  
M. Radin ◽  
I. Cecchi ◽  
S. G. Foddai ◽  
E. Rubini ◽  
...  

Background:Antiphospholipid Syndrome (APS) is an autoimmune disease whose precise aetiology is still unknown, but the high heterogeneity of its manifestations and clinical course is presumably due to the occurrence of different mechanisms and alterations at different levels and pathways [1]. The first genetic studies in APS focused primarily on the human leukocytes antigen system region, but more recent data highlighted a role of other genes in APS susceptibility, primarily those involved in the immune response and in the haemostatic process.Objectives:We aimed to deepen the investigation of APS genetic background starting from a case of familial APS, analysing two siblings with thrombotic APS (Table 1), both triple positive for antiphospholipid antibodies (aPL).Table 1.Main clinical and laboratory characteristics of the patients included in the study.PatientAgeaPL ProfileRelevant Clinical History1 (F)51Triple positive (LA, aCL IgG, aβ2GPI IgG)Two episodes of ischemic stroke, one episode of CAPS (renal thrombotic microangiopathy, visual impairment, ischemic stroke)2 (M)47Triple positive (LA, aCL IgG, aβ2GPI IgG)Three episodes of deep vein thrombosis, regardless ongoing well conducted therapy vitamin k antagonist and additional retinal vein thrombosisLA: lupus anticoagulant; aCL: anti-cardiolipin antibodies; aβ2GPI: anti- β2 glycoprotein I antibodies; CAPS: catastrophic APS.Methods:Genomic DNA was extracted from peripheral blood and the samples underwent Whole Exome Sequencing (WES). Sequencing was done on a 100X coverage, and reads have been aligned to the human reference genome (GRCh37/hg19 assembly) using the Burrows–Wheeler Alignment tool (BWA). The mean sequencing depth on target regions was 170X for patient 1, 205X for patient 2, moreover, 99.50% of the targeted bases had at least 10X coverage for all the three donors. The resulting single nucleotide polymorphisms (SNPs) have been analysed through a step-by-step process based on their frequency population (using Genome Aggregation Database), their predicted effects on the protein (using VarSome) and a literature research about the genes carrying them. Moreover, genes previously associated with a pro-thrombotic tendency and with APS have been analysed in the two patients.Results:Starting from more than 120000 SNPs for each patients, the analysis led to reduce the list of SNPs of interest to 27 missense mutations. The complete literature research regarding the genes carrying these mutations allowed to further reduce the number of selected genes, focusing on those that exert a role potentially involved in APS pathogenesis and development. In particular, these genes (PLA2G6, HSPG2, BCL3, ZFAT, ATP2B2, CRTC3 and ADCY3) take part in the immune response and the vascular homeostasis. The list of the DNA missense variants of interest found in our cases of familial APS is resumed in Figure 2.Figure 2.List of DNA missense variants of interest found in patient 1 and 2. Genes potentially involved in APS pathogenesis and development are highlighted in bold.No mutations on genes known to be associated with a pro-thrombotic state (F5, F2, MTHFR, F13A1, PROC, PROS1, FGB and SERPINE1), or on genes previously associated with APS (B2GPI, PF4V1, SELP, TLR2, TLR4, GP Ia, GP1BA, F2R, F2RL1, TFPI, F3, VEGFA, FLT1, and TNF) have been found in the WES analysis.Conclusion:To some extent, this can be seen as a proof of concept of the complexity of APS. Efforts to interpret the genetic risk factors involved in the heterogeneous clinical features of the syndrome, for instance, the integration of WES and network-based approaches might help to identify and stratify patients at risk of developing APS.References:[1]Iuliano A, Galeazzi M, Sebastiani GD. Antiphospholipid syndrome’s genetic and epigenetic aspects. Autoimmun Rev. 2019;18(9).Disclosure of Interests:None declared


Sign in / Sign up

Export Citation Format

Share Document