scholarly journals SPAK-p38 MAPK signal pathway modulates claudin-18 and barrier function of alveolar epithelium after hyperoxic exposure

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Chih-Hao Shen ◽  
Jr-Yu Lin ◽  
Cheng-Yo Lu ◽  
Sung-Sen Yang ◽  
Chung-Kan Peng ◽  
...  

Abstract Background Hyperoxia downregulates the tight junction (TJ) proteins of the alveolar epithelium and leads to barrier dysfunction. Previous study has showed that STE20/SPS1-related proline/alanine-rich kinase (SPAK) interferes with the intestinal barrier function in mice. The aim of the present study is to explore the association between SPAK and barrier function in the alveolar epithelium after hyperoxic exposure. Methods Hyperoxic acute lung injury (HALI) was induced by exposing mice to > 99% oxygen for 64 h. The mice were randomly allotted into four groups comprising two control groups and two hyperoxic groups with and without SPAK knockout. Mouse alveolar MLE-12 cells were cultured in control and hyperoxic conditions with or without SPAK knockdown. Transepithelial electric resistance and transwell monolayer permeability were measured for each group. In-cell western assay was used to screen the possible mechanism of p-SPAK being induced by hyperoxia. Results Compared with the control group, SPAK knockout mice had a lower protein level in the bronchoalveolar lavage fluid in HALI, which was correlated with a lower extent of TJ disruption according to transmission electron microscopy. Hyperoxia down-regulated claudin-18 in the alveolar epithelium, which was alleviated in SPAK knockout mice. In MLE-12 cells, hyperoxia up-regulated phosphorylated-SPAK by reactive oxygen species (ROS), which was inhibited by indomethacin. Compared with the control group, SPAK knockdown MLE-12 cells had higher transepithelial electrical resistance and lower transwell monolayer permeability after hyperoxic exposure. The expression of claudin-18 was suppressed by hyperoxia, and down-regulation of SPAK restored the expression of claudin-18. The process of SPAK suppressing the expression of claudin-18 and impairing the barrier function was mediated by p38 mitogen-activated protein kinase (MAPK). Conclusions Hyperoxia up-regulates the SPAK-p38 MAPK signal pathway by ROS, which disrupts the TJ of the alveolar epithelium by suppressing the expression of claudin-18. The down-regulation of SPAK attenuates this process and protects the alveolar epithelium against the barrier dysfunction induced by hyperoxia.

2020 ◽  
Author(s):  
Chih-Hao Shen ◽  
Jr-Yu Lin ◽  
Cheng-Yo Lu ◽  
Sung-Sen Yang ◽  
Chung-Kan Peng ◽  
...  

Abstract Background: Hyperoxia downregulates the tight junction (TJ) proteins of the alveolar epithelium and leads to barrier dysfunction. Previous study has showed that STE20/SPS1-related proline/alanine-rich kinase (SPAK) interferes with the intestinal barrier function in mice. The aim of the present study is to explore the association between SPAK and barrier function in the alveolar epithelium after hyperoxic exposure. Methods: Hyperoxic acute lung injury (HALI) was induced by exposing mice to >99% oxygen for 64 hours. The mice were randomly allotted into four groups comprising two control groups and two hyperoxic groups with and without SPAK knockout. Mouse alveolar MLE-12 cells were cultured in control and hyperoxic conditions with or without SPAK knockdown. Transepithelial electric resistance and transwell monolayer permeability were measured for each group. In-cell western assay was used to screen the possible mechanism of p-SPAK being induced by hyperoxia.Results: Compared with the control group, SPAK knockout mice had a lower protein level in the bronchoalveolar lavage fluid in HALI, which was correlated with a lower extent of TJ disruption according to transmission electron microscopy. Hyperoxia down-regulated claudin-18 in the alveolar epithelium, which was alleviated in SPAK knockout mice. In MLE-12 cells, hyperoxia up-regulated phosphorylated-SPAK by reactive oxygen species (ROS), which was inhibited by indomethacin. Compared with the control group, SPAK knockdown MLE-12 cells had higher transepithelial electrical resistance and lower transwell monolayer permeability after hyperoxic exposure. The expression of claudin-18 was suppressed by hyperoxia, and down-regulation of SPAK restored the expression of claudin-18. The process of SPAK suppressing the expression of claudin-18 and impairing the barrier function was mediated by p38 mitogen-activated protein kinase (MAPK).Conclusions: Hyperoxia up-regulates the SPAK-p38 MAPK signal pathway by ROS, which disrupts the TJ of the alveolar epithelium by suppressing the expression of claudin-18. Down-regulation of SPAK attenuates this process and protects the alveolar epithelium against the barrier dysfunction induced by hyperoxia.


2018 ◽  
Vol 45 (1) ◽  
pp. 343-355 ◽  
Author(s):  
Zhihua Liu ◽  
Yinghai Tian ◽  
Yanqiong Jiang ◽  
Shihua Chen ◽  
Ting Liu ◽  
...  

Background/Aims: Let-7b was dramatically reduced after a dicer knockout of mice with intestinal barrier function injuries. This paper aims to investigate the molecular mechanism of let-7b by targeting p38 MAPK in preventing intestinal barrier dysfunction. Methods: A total of 186 patients were enrolled, with 93 in the control group and 93 in the PRO group. Only 158 patients completed the entire study, whereas the others either did not meet the inclusion criteria or refused to participate. To further verify the role of let-7b, intestinal epithelial conditional knockout (IKO) mice of mmu-let-7b model were established. Serum let-7b, zonulin, IL-6, and TNF-α concentrations were measured by ELISA or quantitative RT-PCR. Permeability assay was done by ussing chamber. The apoptotic cells were identified using an In Situ Cell Death Detection Kit. Protein was detected by western blot. Results: Probiotics can lower infection-related complications, as well as increase the serum and tissue let-7b levels. P38 MAPK was identified as the target of let-7b, as verified by NCM460 cells. P38 MAPK expression was increased, whereas tight-junction (TJ) proteins were significantly decreased in let-7b IKO mice (both P<0.05). Negative regulation of p38 MAPK molecular signaling pathways was involved in the protective effects of let-7b on intestinal barrier function. Conclusion: Let-7b was identified as a novel diagnosis biomarker or a potential treatment target for preventing intestinal barrier dysfunction.


2019 ◽  
Vol 176 (15) ◽  
pp. 2808-2824 ◽  
Author(s):  
Shangze Gao ◽  
Hidenori Wake ◽  
Yuan Gao ◽  
Dengli Wang ◽  
Shuji Mori ◽  
...  

Heart ◽  
2013 ◽  
Vol 99 (Suppl 3) ◽  
pp. A6.2-A7
Author(s):  
Lin Li ◽  
Jianfeng Xu ◽  
Yong Ye ◽  
Junbo Ge ◽  
Yunzeng Zou ◽  
...  

2010 ◽  
Vol 26 (6) ◽  
pp. 991-998 ◽  
Author(s):  
Yong Zhang ◽  
Li Zhang ◽  
Wenfeng Chu ◽  
Bing Wang ◽  
Jialin Zhang ◽  
...  

2014 ◽  
Vol 11 (2) ◽  
pp. 121-124 ◽  
Author(s):  
Wenbing Qiu ◽  
Naping Chen ◽  
Qin Zhang ◽  
Liyuan Zhuo ◽  
Xihong Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document