scholarly journals Minimally invasive dynamic screw stabilization using cortical bone trajectory

2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Chih-Chang Chang ◽  
Chao-Hung Kuo ◽  
Hsuan-Kan Chang ◽  
Tsung-Hsi Tu ◽  
Li-Yu Fay ◽  
...  

Abstract Background The conventional pedicle-screw-based dynamic stabilization process involves dissection of the Wiltse plane to cannulate the pedicles, which cannot be undertaken with minimal surgical invasion. Despite some reports having demonstrated satisfactory outcomes of dynamic stabilization in the management of low-grade spondylolisthesis, the extensive soft tissue dissection involved during pedicle screw insertion substantially compromises the designed rationale of motion (muscular) preservation. The authors report on a novel method for minimally invasive insertion of dynamic screws and a mini case series. Methods The authors describe innovations for inserting dynamic screws via the cortical bone trajectory (CBT) under spinal navigation. All the detailed surgical procedures and clinical data are demonstrated. Results A total of four (2 females) patients (mean age 64.75 years) with spinal stenosis at L4–5 were included. By a combination of microscopic decompression and image-guided CBT screw insertion, laminectomy and dynamic screw stabilization were achieved via one small skin incision (less than 3 cm). These patients’ back and leg pain improved significantly after the surgery. Conclusion This innovative dynamic screw stabilization via the CBT involved no discectomy (or removal of sequestrated fragment only), no interbody fusion, and little muscle dissection (not even of the Wiltse plane). As a minimally invasive surgery, CBT appeared to be a viable alternative to the conventional pedicle-screw-based dynamic stabilization approach.

Spine ◽  
2016 ◽  
Vol 41 (14) ◽  
pp. E851-E856 ◽  
Author(s):  
Keitaro Matsukawa ◽  
Takashi Kato ◽  
Yoshiyuki Yato ◽  
Hiroshi Sasao ◽  
Hideaki Imabayashi ◽  
...  

2013 ◽  
Vol 26 (6) ◽  
pp. E248-E253 ◽  
Author(s):  
Keitaro Matsukawa ◽  
Yoshiyuki Yato ◽  
Osamu Nemoto ◽  
Hideaki Imabayashi ◽  
Takashi Asazuma ◽  
...  

2017 ◽  
Vol 43 (2) ◽  
pp. E9 ◽  
Author(s):  
Brandon W. Smith ◽  
Jacob R. Joseph ◽  
Michael Kirsch ◽  
Mary Oakley Strasser ◽  
Jacob Smith ◽  
...  

OBJECTIVEPercutaneous pedicle screw insertion (PPSI) is a mainstay of minimally invasive spinal surgery. Traditionally, PPSI is a fluoroscopy-guided, multistep process involving traversing the pedicle with a Jamshidi needle, placement of a Kirschner wire (K-wire), placement of a soft-tissue dilator, pedicle tract tapping, and screw insertion over the K-wire. This study evaluates the accuracy and safety of PPSI with a simplified 2-step process using a navigated awl-tap followed by navigated screw insertion without use of a K-wire or fluoroscopy.METHODSPatients undergoing PPSI utilizing the K-wire–less technique were identified. Data were extracted from the electronic medical record. Complications associated with screw placement were recorded. Postoperative radiographs as well as CT were evaluated for accuracy of pedicle screw placement.RESULTSThirty-six patients (18 male and 18 female) were included. The patients’ mean age was 60.4 years (range 23.8–78.4 years), and their mean body mass index was 28.5 kg/m2 (range 20.8–40.1 kg/m2). A total of 238 pedicle screws were placed. A mean of 6.6 pedicle screws (range 4–14) were placed over a mean of 2.61 levels (range 1–7). No pedicle breaches were identified on review of postoperative radiographs. In a subgroup analysis of the 25 cases (69%) in which CT scans were performed, 173 screws were assessed; 170 (98.3%) were found to be completely within the pedicle, and 3 (1.7%) demonstrated medial breaches of less than 2 mm (Grade B). There were no complications related to PPSI in this cohort.CONCLUSIONSThis streamlined 2-step K-wire–less, navigated PPSI appears safe and accurate and avoids the need for radiation exposure to surgeon and staff.


2015 ◽  
Vol 7 (4) ◽  
pp. 317-323 ◽  
Author(s):  
Keitaro Matsukawa ◽  
Yoshiyuki Yato ◽  
Hideaki Imabayashi ◽  
Naobumi Hosogane ◽  
Takashi Asazuma ◽  
...  

2014 ◽  
Vol 6 (3) ◽  
pp. 244-248 ◽  
Author(s):  
Koichi Iwatsuki ◽  
Toshiki Yoshimine ◽  
Yu-ichiro Ohnishi ◽  
Kosi Ninomiya ◽  
Toshika Ohkawa

JBJS Reviews ◽  
2017 ◽  
Vol 5 (8) ◽  
pp. e13 ◽  
Author(s):  
I. David Kaye ◽  
Srinivas K. Prasad ◽  
Alex R. Vaccaro ◽  
Alan S. Hilibrand

Sign in / Sign up

Export Citation Format

Share Document