scholarly journals The X chromosome of the German cockroach, Blattella germanica, is homologous to a fly X chromosome despite 400 million years divergence

BMC Biology ◽  
2019 ◽  
Vol 17 (1) ◽  
Author(s):  
Richard P. Meisel ◽  
Pablo J. Delclos ◽  
Judith R. Wexler

Abstract Background Sex chromosome evolution is a dynamic process that can proceed at varying rates across lineages. For example, different chromosomes can be sex-linked between closely related species, whereas other sex chromosomes have been conserved for > 100 million years. Cases of long-term sex chromosome conservation could be informative of factors that constrain sex chromosome evolution. Cytological similarities between the X chromosomes of the German cockroach (Blattella germanica) and most flies suggest that they may be homologous—possibly representing an extreme case of long-term conservation. Results To test the hypothesis that the cockroach and fly X chromosomes are homologous, we analyzed whole-genome sequence data from cockroaches. We found evidence in both sequencing coverage and heterozygosity that a significant excess of the same genes are on both the cockroach and fly X chromosomes. We also present evidence that the candidate X-linked cockroach genes may be dosage compensated in hemizygous males. Consistent with this hypothesis, three regulators of transcription and chromatin on the fly X chromosome are conserved in the cockroach genome. Conclusions Our results support our hypothesis that the German cockroach shares the same X chromosome as most flies. This may represent the convergent evolution of the X chromosome in the lineages leading to cockroaches and flies. Alternatively, the common ancestor of most insects may have had an X chromosome that resembled the extant cockroach and fly X. Cockroaches and flies diverged ∼ 400 million years ago, which would be the longest documented conservation of a sex chromosome. Cockroaches and flies have different mechanisms of sex determination, raising the possibility that the X chromosome was conserved despite the evolution of the sex determination pathway.

2018 ◽  
Author(s):  
Richard P Meisel ◽  
Pablo J Delclos ◽  
Judith R Wexler

AbstractBackgroundSex chromosome evolution is a dynamic process that can proceed at varying rates across lineages. For example, different chromosomes can be sex-linked between closely related species, whereas other sex chromosomes have been conserved for >100 million years. Cases of long-term sex chromosome conservation could be informative of factors that constrain sex chromosome evolution. Cytological similarities between the X chromosomes of the German cockroach (Blattella germanica) and most flies suggest that they may be homologous—possibly representing an extreme case of long-term conservation.ResultsTo test the hypothesis that the cockroach and fly X chromosomes are homologous, we analyzed whole genome sequence data from cockroach. We found evidence in both sequencing coverage and heterozygosity that a significant excess of the same genes are on both the cockroach and fly X chromosomes. We also present evidence that the candidate X-linked cockroach genes may be dosage compensated in hemizygous males. Consistent with this hypothesis, three regulators of transcription and chromatin on the fly X chromosome are conserved in the cockroach genome.ConclusionsOur results support our hypothesis that the German cockroach shares the same X chromosome as most flies. This may represent convergent evolution of the X chromosome in the lineages leading to cockroaches and flies. Alternatively, the common ancestor of most insects may have had an X chromosome that resembled the extant cockroach and fly X. Cockroaches and flies diverged ∼400 million years ago, which would be the longest documented conservation of a sex chromosome. Cockroaches and flies have different mechanisms of sex determination, raising the possibility that the X chromosome was conserved despite evolution of the sex determination pathway.


Genetics ◽  
2003 ◽  
Vol 165 (3) ◽  
pp. 1317-1328 ◽  
Author(s):  
Bryant F McAllister

Abstract Sex chromosomes originate from pairs of autosomes that acquire controlling genes in the sex-determining cascade. Universal mechanisms apparently influence the evolution of sex chromosomes, because this chromosomal pair is characteristically heteromorphic in a broad range of organisms. To examine the pattern of initial differentiation between sex chromosomes, sequence analyses were performed on a pair of newly formed sex chromosomes in Drosophila americana. This species has neo-sex chromosomes as a result of a centromeric fusion between the X chromosome and an autosome. Sequences were analyzed from the Alcohol dehydrogenase (Adh), big brain (bib), and timeless (tim) gene regions, which represent separate positions along this pair of neo-sex chromosomes. In the northwestern range of the species, the bib and Adh regions exhibit significant sequence differentiation for neo-X chromosomes relative to neo-Y chromosomes from the same geographic region and other chromosomal populations of D. americana. Furthermore, a nucleotide site defining a common haplotype in bib is shown to be associated with a paracentric inversion [In(4)ab] on the neo-X chromosome, and this inversion suppresses recombination between neo-X and neo-Y chromosomes. These observations are consistent with the inversion acting as a recombination modifier that suppresses exchange between these neo-sex chromosomes, as predicted by models of sex chromosome evolution.


1989 ◽  
Vol 37 (3) ◽  
pp. 331 ◽  
Author(s):  
DL Hayman

This review includes a list of the chromosome numbers of marsupials and a summary of the main features of chromosome evolution in this group of mammals. Special topics discussed include sex chromosome mosaicism, the size of the marsupial X chromosome, X chromosomes and nucleolar organisers, complex sex chromosome systems, repeated DNA sequences and aspects of meiosis.


2017 ◽  
Vol 284 (1854) ◽  
pp. 20162806 ◽  
Author(s):  
Jessica K. Abbott ◽  
Anna K. Nordén ◽  
Bengt Hansson

Many separate-sexed organisms have sex chromosomes controlling sex determination. Sex chromosomes often have reduced recombination, specialized (frequently sex-specific) gene content, dosage compensation and heteromorphic size. Research on sex determination and sex chromosome evolution has increased over the past decade and is today a very active field. However, some areas within the field have not received as much attention as others. We therefore believe that a historic overview of key findings and empirical discoveries will put current thinking into context and help us better understand where to go next. Here, we present a timeline of important conceptual and analytical models, as well as empirical studies that have advanced the field and changed our understanding of the evolution of sex chromosomes. Finally, we highlight gaps in our knowledge so far and propose some specific areas within the field that we recommend a greater focus on in the future, including the role of ecology in sex chromosome evolution and new multilocus models of sex chromosome divergence.


2019 ◽  
Author(s):  
Xinji Li ◽  
Paris Veltsos ◽  
Guillaume Cossard ◽  
Jörn Gerchen ◽  
John R. Pannell

SummaryThe suppression of recombination during sex-chromosome evolution is thought to be favoured by linkage between the sex-determining locus and sexually-antagonistic loci, and leads to the degeneration of the chromosome restricted to the heterogametic sex. Despite substantial evidence for genetic degeneration at the sequence level, the phenotypic effects of the earliest stages of sex-chromosome evolution are poorly known. Here, we compare the morphology, viability and fertility between XY and YY individuals produced by crossing seed-producing males in the dioecious plant Mercurialis annua L., which has young sex chromosomes with limited X-Y sequence divergence. We found no significant difference in viability or vegetative morphology between XY and YY males. However, electron microscopy revealed clear differences in pollen anatomy, and YY males were significantly poorer sires in competition with their XY counterparts. Our study suggests either that the X chromosome is required for full male fertility in M. annua, or that male fertility is sensitive to the dosage of relevant Y-linked genes. We discuss the possibility that the maintenance of male-fertility genes on the X chromosome might have been favoured in recent population expansions, which selected for the ability of females to produce pollen in the absence of males.


2019 ◽  
Vol 36 (4) ◽  
pp. 727-741 ◽  
Author(s):  
Mohamed Amine Chebbi ◽  
Thomas Becking ◽  
Bouziane Moumen ◽  
Isabelle Giraud ◽  
Clément Gilbert ◽  
...  

Genes ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 1341
Author(s):  
Marcello Mezzasalma ◽  
Fabio M. Guarino ◽  
Gaetano Odierna

Lizards represent unique model organisms in the study of sex determination and sex chromosome evolution. Among tetrapods, they are characterized by an unparalleled diversity of sex determination systems, including temperature-dependent sex determination (TSD) and genetic sex determination (GSD) under either male or female heterogamety. Sex chromosome systems are also extremely variable in lizards. They include simple (XY and ZW) and multiple (X1X2Y and Z1Z2W) sex chromosome systems and encompass all the different hypothesized stages of diversification of heterogametic chromosomes, from homomorphic to heteromorphic and completely heterochromatic sex chromosomes. The co-occurrence of TSD, GSD and different sex chromosome systems also characterizes different lizard taxa, which represent ideal models to study the emergence and the evolutionary drivers of sex reversal and sex chromosome turnover. In this review, we present a synthesis of general genome and karyotype features of non-snakes squamates and discuss the main theories and evidences on the evolution and diversification of their different sex determination and sex chromosome systems. We here provide a systematic assessment of the available data on lizard sex chromosome systems and an overview of the main cytogenetic and molecular methods used for their identification, using a qualitative and quantitative approach.


2020 ◽  
Author(s):  
Matthew A. Conte ◽  
Frances E. Clark ◽  
Reade B. Roberts ◽  
Luohao Xu ◽  
Wenjing Tao ◽  
...  

AbstractChromosome size and morphology vary within and among species, but little is known about either the proximate or ultimate causes of these differences. Cichlid fish species in the tribe Oreochromini share an unusual megachromosome that is ~3 times longer than any of the other chromosomes. This megachromosome functions as a sex chromosome in some of these species. We explore two hypotheses of how this sex megachromosome may have evolved. The first hypothesis proposes that it developed by the accumulation of repetitive elements as recombination was reduced around a dominant sex-determination locus, as suggested by traditional models of sex chromosome evolution. An alternative hypothesis is that the megachromosome originated via the fusion of an autosome with a highly-repetitive B chromosome, one of which had carried a sex-determination locus. Here we test these hypotheses using comparative analysis of several chromosome-scale cichlid and teleost genomes. We find the megachromosome consists of three distinct regions based on patterns of recombination, gene and transposable element content, and synteny to the ancestral autosome. A WZ sex-determination locus encompasses the last ~105Mbp of the 134Mbp megachromosome and the last 47Mbp of the megachromosome shares no obvious homology to any ancestral chromosome. Comparisons across 69 teleost genomes reveal the megachromosome contains unparalleled amounts of endogenous retroviral elements, immunoglobulin genes, and long non-coding RNAs. Although the origin of this megachromosome remains ambiguous, it has clearly been a focal point of extensive evolutionary genomic conflicts. This megachromosome represents an interesting system for studying sex chromosome evolution and genomic conflicts.


2009 ◽  
Vol 3 (2-3) ◽  
pp. 68-77 ◽  
Author(s):  
C. Schultheis ◽  
A. Böhne ◽  
M. Schartl ◽  
J.N. Volff ◽  
D. Galiana-Arnoux

Sign in / Sign up

Export Citation Format

Share Document