scholarly journals Gene networks and transcriptional regulators associated with liver cancer development and progression

2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Tatiana Meier ◽  
Max Timm ◽  
Matteo Montani ◽  
Ludwig Wilkens

Abstract Background Treatment options for hepatocellular carcinoma (HCC) are limited, and overall survival is poor. Despite the high frequency of this malignoma, its basic disease mechanisms are poorly understood. Therefore, the aim of this study was to use different methodological approaches and combine the results to improve our knowledge on the development and progression of HCC. Methods Twenty-three HCC samples were characterized by histological, morphometric and cytogenetic analyses, as well as comparative genomic hybridization (aCGH) and genome-wide gene expression followed by a bioinformatic search for potential transcriptional regulators and master regulatory molecules of gene networks. Results Histological evaluation revealed low, intermediate and high-grade HCCs, and gene expression analysis split them into two main sets: GE1-HCC and GE2-HCC, with a low and high proliferation gene expression signature, respectively. Array-based comparative genomic hybridization demonstrated a high level of chromosomal instability, with recurrent chromosomal gains of 1q, 6p, 7q, 8q, 11q, 17q, 19p/q and 20q in both HCC groups and losses of 1p, 4q, 6q, 13q and 18q characteristic for GE2-HCC. Gene expression and bioinformatics analyses revealed that different genes and gene regulatory networks underlie the distinct biological features observed in GE1-HCC and GE2-HCC. Besides previously reported dysregulated genes, the current study identified new candidate genes with a putative role in liver cancer, e.g. C1orf35, PAFAH1B3, ZNF219 and others. Conclusion Analysis of our findings, in accordance with the available published data, argues in favour of the notion that the activated E2F1 signalling pathway, which can be responsible for both inappropriate cell proliferation and initial chromosomal instability, plays a pivotal role in HCC development and progression. A dedifferentiation switch that manifests in exaggerated gene expression changes might be due to turning on transcriptional co-regulators with broad impact on gene expression, e.g. POU2F1 (OCT1) and NFY, as a response to accumulating cell stress during malignant development. Our findings point towards the necessity of different approaches for the treatment of HCC forms with low and high proliferation signatures and provide new candidates for developing appropriate HCC therapies.

2018 ◽  
Vol 21 (2) ◽  
pp. 63-67
Author(s):  
S Zachaki ◽  
E Kouvidi ◽  
A Mitrakos ◽  
L Lazaros ◽  
A Pantou ◽  
...  

Abstract A novel de novo paracentric inversion of the long arm of chromosome 20 [inv(20)(q13.1q13.3)], detected by conventional karyotyping in a 14-year-old boy with mental retardation is described. Further investigation by array comparative genomic hybridization (aCGH) revealed that the 20q inversion was not accompanied by microdeletions/microduplications containing disease-associated genes near or at the breakpoints. Two deletions at chromosomal regions 11q14.3q21 and 20q12 of 4.5 and 1.97 Mb size, respectively, containing important online Mendelian inheritance in man (OMIM) genes, were detected. The 4.5Mb 11q14.3q21 microdeletion was contained within a region that is involved, in most of the reported cases, with the interstitial 11q deletion and may be related to the mental retardation and developmental delay present in the patient. On the other hand, the published data about the 20q12 microdeletion are very few and it is not possible to correlate this finding with our patient’s phenotype. This case report contributes to the description of a new chromosomal entity, not previously reported, and is therefore important, especially in prenatal diagnosis and management of patients. Array comparative genomic hybridization has proven a useful technique for detecting submicroscopic rearrangements and should be offered prenatally, especially in cases of de novo karyotypically balanced chromosomal inversions or translocations in order to unveil other unbalanced chromosomal abnormalities such as deletions and amplifications.


2004 ◽  
Vol 41 (4) ◽  
pp. 353-365 ◽  
Author(s):  
Bárbara Meléndez ◽  
Ramón Díaz-Uriarte ◽  
Marta Cuadros ◽  
Ángel Martínez-Ramírez ◽  
José Fernández-Piqueras ◽  
...  

2013 ◽  
Vol 62 (11) ◽  
pp. 1735-1742 ◽  
Author(s):  
Andrew Smith ◽  
Calum Johnston ◽  
Donald Inverarity ◽  
Mary Slack ◽  
Gavin K. Paterson ◽  
...  

Streptococcus pneumoniae diseases are a rare but increasingly recognized trigger of atypical haemolytic uraemic syndrome (HUS) in young children and associated with a higher mortality rate than diarrhoea-associated HUS. This study aimed to determine the importance of neuraminidase A (NanA) and genomic diversity in the pathogenesis of pneumococcal HUS (pHUS). We investigated the nanA gene sequence, gene expression, neuraminidase activity and comparative genomic hybridization of invasive pneumococcal disease (IPD) isolates from patients with pHUS and control strains matched by serotype and sequence type (ST), isolated from patients with IPD but not pHUS. The nanA sequence of 33 isolates was determined and mutations at 142 aa positions were identified. High levels of diversity were observed within the NanA protein, with mosaic blocks, insertions and repeat regions present. When comparing nanA allelic diversity with ST and disease profile in the isolates tested, nanA alleles clustered mostly by ST. No particular nanA allele was associated with pHUS. There was no significant difference in overall neuraminidase activity between pHUS isolates and controls when induced/uninduced with N-acetylneuraminic acid. Comparative genomic hybridization showed little difference in genetic content between the pHUS isolates and the controls. Results of gene expression studies identified 12 genes differentially regulated in all pHUS isolates compared with the control. Although neuraminidase enzyme activity may be important in pHUS progression and contribute to pathogenesis, the lack of a distinction between pHUS isolates and controls suggests that host factors, such as acquired abnormalities of the alternative complement cascade in young children, may play a more significant role in the outcome of pHUS.


Sign in / Sign up

Export Citation Format

Share Document