scholarly journals Improvement of FK506 production via metabolic engineering-guided combinational strategies in Streptomyces tsukubaensis

2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Qing-Bin Wu ◽  
Xiao-Ying Zhang ◽  
Xin-Ai Chen ◽  
Yong-Quan Li

Abstract Background FK506, a macrolide mainly with immunosuppressive activity, can be produced by various Streptomyces strains. However, one of the major challenges in the fermentation of FK506 is its insufficient production, resulting in high fermentation costs and environmental burdens. Herein, we tried to improve its production via metabolic engineering-guided combinational strategies in Streptomyces tsukubaensis. Results First, basing on the genome sequencing and analysis, putative competitive pathways were deleted. A better parental strain L19-2 with increased FK506 production from 140.3 to 170.3 mg/L and a cleaner metabolic background was constructed. Subsequently, the FK506 biosynthetic gene cluster was refactored by in-situ promoter-substitution strategy basing on the regulatory circuits. This strategy enhanced transcription levels of the entire FK506 biosynthetic gene cluster in a fine-tuning manner and dramatically increased the FK506 production to 410.3 mg/mL, 1.41-fold higher than the parental strain L19-2 (170.3 mg/L). Finally, the FK506 production was further increased from 410.3 to 603 mg/L in shake-flask culture by adding L-isoleucine at a final concentration of 6 g/L. Moreover, the potential of FK506 production capacity was also evaluated in a 15-L fermenter, resulting in the FK506 production of 830.3 mg/L. Conclusion From the aspects of competitive pathways, refactoring of the FK506 biosynthetic gene cluster and nutrients-addition, a strategy for hyper-production and potentially industrial application of FK506 was developed and a hyper-production strain L19-9 was constructed. The strategy presented here can be generally applicable to other Streptomyces for improvement of FK506 production and streamline hyper-production of other valuable secondary metabolites.

2016 ◽  
Vol 43 (12) ◽  
pp. 1693-1703 ◽  
Author(s):  
Xiao-Sheng Zhang ◽  
Hong-Dou Luo ◽  
Yang Tao ◽  
Yue-Yue Wang ◽  
Xin-Hang Jiang ◽  
...  

RNA Biology ◽  
2017 ◽  
Vol 14 (11) ◽  
pp. 1617-1626 ◽  
Author(s):  
Judith S. Bauer ◽  
Sven Fillinger ◽  
Konrad Förstner ◽  
Alexander Herbig ◽  
Adam C. Jones ◽  
...  

2018 ◽  
Author(s):  
Frederick F. Twigg ◽  
Wenlong Cai ◽  
Wei Huang ◽  
Joyce Liu ◽  
Michio Sato ◽  
...  

AbstractTriacsins are a family of natural products containing an N-hydroxytriazene moiety not found in any other known secondary metabolites. Though many studies have examined the biological activity of triacsins in lipid metabolism, the biosynthesis of triacsins has remained unknown. Here, we report the identification of the triacsin biosynthetic gene cluster in Streptomyces aureofaciens ATCC 31442. Bioinformatic analysis of the gene cluster led to the discovery of the tacrolimus producer Streptomyces tsukubaensis NRRL 18488 as a new triacsin producer. In addition to targeted gene disruption to identify necessary genes for triacsin production, stable isotope feeding was performed in vivo to advance the understanding of N-hydroxytriazene biosynthesis.


2019 ◽  
Vol 8 (1) ◽  
Author(s):  
Anina Buchmann ◽  
Carolina Cano-Prieto ◽  
Ahmed Nafis ◽  
Mustapha Barakate ◽  
Mohamed Baz ◽  
...  

Streptomyces sp. strain Z26 exhibited antifungal activity and turned out to be a producer of the secondary metabolites novonestmycin A and B. The 6.5-Mb draft genome gives insight into the complete secondary metabolite production capacity and builds the basis to find and locate the biosynthetic gene cluster encoding the novonestmycins.


Author(s):  
Joana Martins ◽  
Niina Leikoski ◽  
Matti Wahlsten ◽  
Joana Azevedo ◽  
Jorge Antunes ◽  
...  

Cyanobactins are a family of linear and cyclic peptides produced through the post-translational modification of short precursor peptides. Anacyclamides are macrocyclic cyanobactins with a highly diverse sequence that are common in the genus <i>Anabaena</i>. A mass spectrometry-based screening of potential cyanobactin producers led to the discovery of a new prenylated member of this family of compounds, anacyclamide D8P (<b>1</b>), from <i>Sphaerospermopsis</i> sp. LEGE 00249. The anacyclamide biosynthetic gene cluster (<i>acy</i>) encoding the novel macrocyclic prenylated cyanobactin, was sequenced. Heterologous expression of the acy gene cluster in <i>Escherichia</i> <i>coli</i> established the connection between genomic and mass spectrometric data. Unambiguous establishment of the type and site of prenylation required the full structural elucidation of <b>1</b> using Nuclear Magnetic Resonance (NMR), which demonstrated that a forward prenylation occurred on the tyrosine residue. Compound <b>1</b> was tested in pharmacologically or ecologically relevant biological assays and revealed moderate antimicrobial activity towards the fouling bacterium <i>Halomonas aquamarina</i> CECT 5000.<br>


Sign in / Sign up

Export Citation Format

Share Document