scholarly journals Estimating malaria parasite prevalence from community surveys in Uganda: a comparison of microscopy, rapid diagnostic tests and polymerase chain reaction

2015 ◽  
Vol 14 (1) ◽  
Author(s):  
Joaniter I. Nankabirwa ◽  
Adoke Yeka ◽  
Emmanuel Arinaitwe ◽  
Ruth Kigozi ◽  
Chris Drakeley ◽  
...  
2019 ◽  
Vol 113 (11) ◽  
pp. 701-705 ◽  
Author(s):  
Zakya A Abdalla ◽  
NourElhouda A Rahma ◽  
Elhashimi E Hassan ◽  
Tajeldin M Abdallah ◽  
Hadeel E Hamad ◽  
...  

Abstract Background Accurate diagnosis of malaria infection is essential for successful control and management of the disease. Both microscopy and rapid diagnostic tests (RDTs) are recommended for malaria diagnosis, however, RDTs are more commonly used. The aim of the current study was to assess the performance of microscopy and RDTs in the diagnosis of Plasmodium falciparum infection using a nested polymerase chain reaction (PCR) assay as the gold standard. Methods A cross-sectional study was carried out in Kassala Hospital, eastern Sudan. A total of 341 febrile participants of all ages were recruited. Blood specimens were collected and malaria testing was performed using an RDT (SD Bioline Malaria Ag Pf), microscopy and nested PCR. The sensitivity, specificity, positive and negative predictive values (PPV and NPV, respectively) of microscopy and the RDT were investigated. Results The prevalence of P. falciparum malaria infections in this study was 22.9%, 24.3% and 26.7% by PCR, microscopy and RDT, respectively. Compared with microscopy, the RDT had slightly higher sensitivity (80.7% vs 74.3%; p=0.442), equivalent specificity (89.3% vs 90.4%), a similar PPV (69.2% vs 69.8%) and a higher NPV (94.0% vs 92.2%). Conclusions The diagnostic performance of the RDT was better than that of microscopy in the diagnosis of P. falciparum malaria when nested PCR was used as the gold standard.


2010 ◽  
Vol 31 (S1) ◽  
pp. S35-S37 ◽  
Author(s):  
John G. Bartlett

There has been a recent surge of interest in Clostridium difficile infection, which reflects an impressive increase in the number and severity of these infections. This review addresses some of the newer methods for detection of C. difficile infection at the bedside and in the laboratory. Particularly important are the new rapid diagnostic tests that detect toxigenic C. difficile using polymerase chain reaction and the combination tests that, either simultaneously or sequentially, screen for C. difficile and test for toxins A and B. It is expected that these new testing methods will largely supplant the enzyme immunoassays for toxins, which are used by most laboratories, departments, and divisions. The present goal is to combine clinical, laboratory, and animal research related to C. difficile that reflects issues that are considered to be major contemporary challenges. Among this work is the pursuit of studies of immune mechanisms to better control this disease.


2013 ◽  
Vol 24 (1) ◽  
pp. e22-e23
Author(s):  
Stephanie K Yanow ◽  
Daniel Gregson ◽  
Rupesh Chawla

The clinical presentation and diagnosis of malaria involving a family with seven children who arrived in Canada as refugees is reported. Discrepancies in front-line testing using microscopy and rapid diagnostic tests compared with confirmatory testing using real-time polymerase chain reaction in this cluster of symptomatic and asymptomatic patients were identified.


1999 ◽  
Vol 123 (12) ◽  
pp. 1182-1188 ◽  
Author(s):  
Rebecca C. Hankin ◽  
Susan V. Hunter

Abstract Objective.—This article summarizes the most useful ancillary immunohistochemical and molecular assays for use in the diagnosis of mantle cell lymphoma. Data Sources.—The English language literature was surveyed, with an emphasis on recent publications, for articles presenting key advances in the molecular characterization of mantle cell lymphomas and for series of cases testing the utility of molecular diagnostic tests. The authors' series of 26 small B-cell lymphomas, analyzed for the cyclin D1 protein by paraffin immunohistochemistry and for t(11;14) by polymerase chain reaction, is included. Conclusions.—Mantle cell lymphoma, a B-cell lymphoma now recognized in the 1994 Revised European-American Classification of Lymphoid Neoplasms (REAL) classification, is a relatively aggressive lymphoma with a poor prognosis. Its characteristic t(11;14)(q13;q32) translocation has a role in oncogenesis and has been exploited for molecular diagnostic tests, but these tests vary in sensitivity, specificity, and ease of use. Improved immunohistochemical tests are sufficient to confirm the diagnosis in most cases. Conventional cytogenetics and molecular diagnostic tests for t(11;14)—Southern blot and polymerase chain reaction analysis—may be helpful in selected cases, but are laborious or of limited sensitivity. Other methods, such as fluorescence in situ hybridization, need further development to provide faster, more sensitive diagnosis.


2020 ◽  
Vol 56 (02) ◽  
pp. 087-090
Author(s):  
Saumya Srivastava ◽  
Vidhi Jain ◽  
Vijaya Lakshmi Nag ◽  
Sanjeev Misra ◽  
Kuldeep Singh

AbstractDevelopment of rapid, reliable, and easy diagnostic tests with high-throughput is the need of the hour for laboratories combating the COVID-19 pandemic. While real-time polymerase chain reaction (RT-PCR) is the gold standard for diagnosing active infections, it is expensive and time-consuming. Serological diagnostic assays with a premise to aid rapid contact tracing, immune status determination, and identification of potential convalescent plasma donors hold great promise. Timely diagnosis, effective treatment, and future prevention are key to management of COVID-19.


Sign in / Sign up

Export Citation Format

Share Document