scholarly journals Modelling the impact of the long-term use of insecticide-treated bed nets on Anopheles mosquito biting time

2017 ◽  
Vol 16 (1) ◽  
Author(s):  
Claudia P. Ferreira ◽  
Silas P. Lyra ◽  
Franciane Azevedo ◽  
David Greenhalgh ◽  
Eduardo Massad
2015 ◽  
Vol 08 (06) ◽  
pp. 1550077 ◽  
Author(s):  
Bruno Buonomo

A malaria model is formulated which includes the enhanced attractiveness of infectious humans to mosquitoes, as result of host manipulation by malaria parasite, and the human behavior, represented by insecticide-treated bed-nets usage. The occurrence of a backward bifurcation at R0 = 1 is shown to be possible, which implies that multiple endemic equilibria co-exist with a stable disease-free equilibrium when the basic reproduction number is less than unity. This phenomenon is found to be caused by disease-induced human mortality. The global asymptotic stability of the endemic equilibrium for R0 > 1 is proved, by using the geometric method for global stability. Therefore, the disease becomes endemic for R0 > 1 regardless of the number of initial cases in both the human and vector populations. Finally, the impact on system dynamics of vector's host preferences and bed-net usage behavior is investigated.


2014 ◽  
Vol 7 (1) ◽  
pp. 52 ◽  
Author(s):  
Hanako Iwashita ◽  
Gabriel O Dida ◽  
George O Sonye ◽  
Toshihiko Sunahara ◽  
Kyoko Futami ◽  
...  

2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
A. Ankomah ◽  
S. B. Adebayo ◽  
E. D. Arogundade ◽  
J. Anyanti ◽  
E. Nwokolo ◽  
...  

Background. Malaria during pregnancy is a major public health problem in Nigeria especially in malaria-endemic areas. It increases the risk of low birth weight and child/maternal morbidity/mortality. This paper addresses the impact of radio campaigns on the use of insecticide-treated bed nets among pregnant women in Nigeria. Methods. A total of 2,348 pregnant women were interviewed during the survey across 21 of Nigeria’s 36 states. Respondents were selected through a multistage sampling technique. Analysis was based on multivariate logistic regression. Results. Respondents who knew that sleeping under ITN prevents malaria were 3.2 times more likely to sleep under net (OR: 3.15; 95% CI: 2.28 to 4.33; P<0.0001). Those who listened to radio are also about 1.6 times more likely to use ITN (OR: 1.56; 95% CI: 1.07 to 2.28; P=0.020), while respondents who had heard of a specific sponsored radio campaign on ITN are 1.53 times more likely to use a bed net (P=0.019). Conclusion. Pregnant women who listened to mass media campaigns were more likely to adopt strategies to protect themselves from malaria. Therefore, behavior change communication messages that are aimed at promoting net use and antenatal attendance are necessary in combating malaria.


2021 ◽  
Author(s):  
Inga E. Holmdahl ◽  
Caroline O. Buckee ◽  
Lauren M. Childs

Background Systematic, long-term, and spatially representative monitoring of insecticide resistance in mosquito populations is urgently needed to quantify its impact on malaria transmission, and to combat failing interventions when resistance emerges. Resistance assays on wild-caught adult mosquitoes (known as adult-capture) offer an alternative to the current protocols, and can be done cheaply, in a shorter time frame, and in the absence of an insectary. However, quantitative assessments of the performance of these assays relative to the gold standard, which involves rearing larvae in an insectary, are lacking. Methodology/Principal findings We developed a discrete-time deterministic mosquito lifecycle model to simulate insecticide resistance assays from adult-captured mosquito collection in a heterogeneous environment compared to the gold standard larval capture methods, and to quantify possible biases in the results. We incorporated non-lethal effects of insecticide exposure that have been demonstrated in laboratory experiments, spatial structure, and the impact of multiple exposure to insecticides and natural ageing on mosquito death rates during the assay. Using output from this model, we compared the results of these assays to true resistance as measured by the presence of the resistance allele. In simulated samples of 100 test mosquitoes, reflecting WHO-recommended sample sizes, we found that compared to adult-captured assays (MSE = 0.0059), larval-captured assays were a better measure of true resistance (MSE = 0.0018). Using a correction model, we were able to improve the accuracy of the adult-captured assay results (MSE = 0.0038). Bias in the adult-capture assays was dependent on the level of insecticide resistance rather than coverage of bed nets or spatial structure. Conclusions/Significance Using adult-captured mosquitoes for resistance assays has logistical advantages over the standard larval-capture collection, and may be a more accurate sample of the mosquito population. These results show that adult-captured assays can be improved using a simple mathematical approach and used to inform resistance monitoring programs.


2020 ◽  
Author(s):  
Timothy Awine ◽  
Sheetal P Silal

Abstract Background Assessing the effectiveness of malaria control measures in Ghana will require taking transmission dynamics of the disease into account given the influence of climate variability in the region of interest. The impact of preventative interventions on malaria incidence and the prospects of meeting program timelines in Ghana have been investigated using mathematical models based on regionally diverse climatic zones. Methods An ordinary non-linear differential equation model with its associated rate parameters was developed incorporating the transitions between various disease compartments for three ecological zones in Ghana. Model parameters were estimated using data captured on the District Health Information Management System in Ghana from 2008 to 2017.The impact of insecticide treated bed nets and indoor residual spraying on the incidence of malaria were simulated at various levels of coverage and protective effectiveness in each ecological zone. To fit the model, Approximate Bayesian Computational sampling approach was adopted. Results Increasing the coverage levels of both long lasting insecticide treated bed nets or indoor residual spraying activities without a corresponding increase in their proper use or patronage does not impact highly on averting predicted incidence of malaria in Ghana. Improving on the protective efficacy of long lasting insecticide treated bed nets through proper usage could lead to substantial reductions in the predicted incidence of malaria. Similar results were obtained with indoor residual spraying across all zones. Conclusions Projected goals set in the National Strategic plan for malaria control 2014-2020 as well as WHO targets for malaria pre-elimination by 2030 are only likely be achieved if a substantial improvement in treated bed net usage is achieved coupled with targeted deployment of indoor residual spraying with high efficacy.


2020 ◽  
Vol 19 (1) ◽  
Author(s):  
Timothy Awine ◽  
Sheetal P. Silal

Abstract Background This paper investigates the impact of malaria preventive interventions in Ghana and the prospects of achieving programme goals using mathematical models based on regionally diverse climatic zones of the country. Methods Using data from the District Health Information Management System of the Ghana Health Service from 2008 to 2017, and historical intervention coverage levels, ordinary non-linear differential equations models were developed. These models incorporated transitions amongst various disease compartments for the three main ecological zones in Ghana. The Approximate Bayesian Computational sampling approach, with a distance based rejection criteria, was adopted for calibration. A leave-one-out approach was used to validate model parameters and the most sensitive parameters were evaluated using a multivariate regression analysis. The impact of insecticide-treated bed nets and their usage, and indoor residual spraying, as well as their protective efficacy on the incidence of malaria, was simulated at various levels of coverage and protective effectiveness in each ecological zone to investigate the prospects of achieving goals of the Ghana malaria control strategy for 2014–2020. Results Increasing the coverage levels of both long-lasting insecticide-treated bed nets and indoor residual spraying activities, without a corresponding increase in their recommended utilization, does not impact highly on averting predicted incidence of malaria. Improving proper usage of long-lasting insecticide-treated bed nets could lead to substantial reductions in the predicted incidence of malaria. Similar results were obtained with indoor residual spraying across all ecological zones of Ghana. Conclusions Projected goals set in the national strategic plan for malaria control 2014–2020, as well as World Health Organization targets for malaria pre-elimination by 2030, are only likely to be achieved if a substantial improvement in treated bed net usage is achieved, coupled with targeted deployment of indoor residual spraying with high community acceptability and efficacy.


Sign in / Sign up

Export Citation Format

Share Document