scholarly journals K13-propeller gene polymorphisms of Plasmodium falciparum and the therapeutic effect of artesunate among migrant workers returning to Guangxi, China (2014–2017)

2019 ◽  
Vol 18 (1) ◽  
Author(s):  
Jun Li ◽  
Yunliang Shi ◽  
Weiwei Zhang ◽  
Hui Yan ◽  
Kangming Lin ◽  
...  

Abstract Background The resistance of Plasmodium falciparum to artemisinin has been identified in Asia and some parts of Africa. The drug resistance of P. falciparum will be an obstacle to the successful elimination of malaria by 2025. Whole-genome sequencing of the artemisinin-resistant parasite line revealed mutations on the k13 gene associated with drug resistance in P. falciparum. To understand the artemisinin resistance of the imported P. falciparum cases from Africa, the mutations in the k13 gene in parasites from imported malaria cases in Guangxi Province were detected and the treatment efficiency of artesunate monotherapy was observed. Methods DNA was extracted from 319 blood samples from migrant workers with P. falciparum infection who returned to their hometown in Guangxi Province from Africa between 2014 and 2017. The k13-propeller gene was amplified by nested PCR, and sequencing, gene mutation frequency and geographic difference of imported P. falciparum cases were analysed by comparison with the wild-type strain. Of 319 patients, 158 were P. falciparum-infected and were treated with intravenous injection of artesunate and were observed, including the time of asexual stage clearance and the dose of artesunate used. Results Of the 319 P. falciparum samples, 12 samples had the k13-propeller mutation, and 11 point mutations were detected; 5 were non-synonymous mutations (T474I, A481T, A578S, V603E, G665S) and were not associated with artemisinin resistance. The clinical treatment observation showed that the median (IQR) dose of artesunate for peripheral blood parasite asexual stage clearance was 407.55 (360–510) mg, and the D3 parasite clearance rate was 70.25%, including the five k13-propeller mutations of P. falciparum. After 7 days of treatment, 98.73% of cases were cleared. Two cases were treated with artemisinin for 8 days with a 960-mg dose to completely clear the asexual parasite, but they did not have a mutation in the k13 gene. Conclusions Five mutations of the k13-propeller gene in 319 P. falciparum samples from patients returning from Africa were identified. The frequency of the k13-propeller mutants was low, and the mutations were not strongly associated with artemisinin resistance. The median (IQR) dose of artesunate monotherapy in actual clinical treatment to remove asexual parasite stages was 407.55 (360–510) mg, equivalent to D3–D4. Some P. falciparum cases without a k13-propeller mutation showed obvious delayed clearance of the parasite from peripheral blood. Trial registration The diagnosis of malaria and the treatment of malaria-infected patients are the routine work of Centres for Disease Control and Prevention. Information on the patients was conveyed with the patient’s approval, and the research aim, methods, risks and benefits of the study were explained in detail to the patients

2017 ◽  
Vol 61 (3) ◽  
Author(s):  
Eldin Talundzic ◽  
Yaye D. Ndiaye ◽  
Awa B. Deme ◽  
Christian Olsen ◽  
Dhruviben S. Patel ◽  
...  

ABSTRACT The emergence of Plasmodium falciparum resistance to artemisinin in Southeast Asia threatens malaria control and elimination activities worldwide. Multiple polymorphisms in the P. falciparum kelch gene found in chromosome 13 (Pfk13) have been associated with artemisinin resistance. Surveillance of potential drug resistance loci within a population that may emerge under increasing drug pressure is an important public health activity. In this context, P. falciparum infections from an observational surveillance study in Senegal were genotyped using targeted amplicon deep sequencing (TADS) for Pfk13 polymorphisms. The results were compared to previously reported Pfk13 polymorphisms from around the world. A total of 22 Pfk13 propeller domain polymorphisms were identified in this study, of which 12 have previously not been reported. Interestingly, of the 10 polymorphisms identified in the present study that were also previously reported, all had a different amino acid substitution at these codon positions. Most of the polymorphisms were present at low frequencies and were confined to single isolates, suggesting they are likely transient polymorphisms that are part of naturally evolving parasite populations. The results of this study underscore the need to identify potential drug resistance loci existing within a population, which may emerge under increasing drug pressure.


2019 ◽  
Author(s):  
Mukul Rawat ◽  
Abhishek Kanyal ◽  
Aishwarya Sahasrabudhe ◽  
Shruthi S. Vembar ◽  
Jose-Juan Lopez-Rubio ◽  
...  

AbstractPlasmodium falciparumhas evolved resistance to almost all front-line drugs including artemisinins, which threatens malaria control and elimination strategies. Oxidative stress and protein damage responses have emerged as key players in the generation of artemisinin resistance. In this study, we show that PfGCN5, a histone acetyltransferase, binds to the stress responsive and multi-variant family genes in poised state and regulates their expression under stress conditions. We have also provided biochemical and cellular evidences that PfGCN5 regulates stress responsive genes by acetylation of PfAlba3. Furthermore, we show that upon artemisinin exposure, genome-wide binding sites for PfGCN5 are increased and it is directly associated with the genes implicated in artemisinin resistance generation like BiP and TRiC chaperone. Moreover, inhibition of PfGCN5 in artemisinin resistant parasites, Kelch13 mutant, K13I543T and K13C580Y (RSA∼ 25% and 6%, respectively) reverses the sensitivity of the parasites to artemisinin treatment indicating its role in drug resistance generation. Together, these findings elucidate the role of PfGCN5 as a global chromatin regulator of stress-responses with potential role in modulating artemisinin drug resistance, and identify PfGCN5 as an important target against artemisinin resistant parasites.Author SummaryMalaria parasites are constantly adapting to the drugs we used to eliminate them. Thus, when we use the drugs to kill parasites; with time, we select the parasites with the favourable genetic changes. Parasites develop various strategies to overcome exposure to the drugs by exhibiting the stress responses. The changes specific to the drug adapted parasites can be used to understand the mechanism of drug resistance generation. In this study, we have identified PfGCN5 as a global transcriptional regulator of stress responses inPlasmodium falciparum. Inhibition of PfGCN5 reverses the sensitivity of the parasites to the artemisinin drug and identify PfGCN5 as an important target against artemisinin resistant parasites.


F1000Research ◽  
2021 ◽  
Vol 10 ◽  
pp. 628
Author(s):  
Harriet Natabona Mukhongo ◽  
Johnson Kang'ethe Kinyua ◽  
Yishak Gebrekidan Weldemichael ◽  
Remmy Wekesa Kasili

Background: Antimalarial drug resistance is a major challenge hampering malaria control and elimination. Plasmodium falciparum, the leading causative parasite species, has developed resistance to basically all antimalarials. Continued surveillance of drug resistance using genetic markers provides important molecular data for treatment policies. This study sought to verify the genetic mechanism of resistance to sulfadoxine-pyrimethamine and assess the occurrence of point mutations associated with artemisinin resistance in P. falciparum clinical isolates from Eritrea. Methods: Nineteen dried blood spot samples were collected from patients visiting Adi Quala, Keren and Gash Barka Hospitals, Eritrea. The patients were followed up after receiving treatment with first line artesunate-amodiaquine. Nested polymerase chain reaction and Sanger sequencing techniques were employed to genotype point mutations in the P. falciparum bifunctional dihydrofolate reductase-thymidylate synthase (Pfdhfr, PF3D7_0417200), dihydropteorate synthase (Pfdhps, PF3D7_0810800) and kelch 13 (PfK13, PF3D7_1343700) genes. Results: Eight of nineteen (42%) of the dried blood spot samples were successful for PCR-amplification. Data analyses of the PCR-positive isolates revealed the following point mutations: Pfdhfr N51I in four isolates, C59R in one isolate, S108N in four isolates, a rare non-synonymous substitution V45A in four isolates and Pfdhps K540E in four isolates. No PfK13 point mutations were reported. Conclusions: Pfdhfr C59R and Pfdhps K540E point mutations are reliable markers for the sulfadoxine-pyrimethamine quintuple mutant haplotype combination. These findings highlight first reports in Eritrea, which verify the underlying genetic mechanism of antifolate resistance. Continuous monitoring of the PfK13 marker is recommended.


2017 ◽  
Vol 61 (5) ◽  
Author(s):  
Suporn Pholwat ◽  
Jie Liu ◽  
Suzanne Stroup ◽  
Shevin T. Jacob ◽  
Patrick Banura ◽  
...  

ABSTRACT Antimalarial drug resistance exacerbates the global disease burden and complicates eradication efforts. To facilitate the surveillance of resistance markers in countries of malaria endemicity, we developed a suite of TaqMan assays for known resistance markers and compartmentalized them into a single array card (TaqMan array card, TAC). We included 87 assays for species identification, for the detection of Plasmodium falciparum mutations associated with chloroquine, atovaquone, pyrimethamine, sulfadoxine, and artemisinin resistance, and for neutral single nucleotide polymorphism (SNP) genotyping. Assay performance was first optimized using DNA from common laboratory parasite lines and plasmid controls. The limit of detection was 0.1 to 10 pg of DNA and yielded 100% accuracy compared to sequencing. The tool was then evaluated on 87 clinical blood samples from around the world, and the malaria TAC once again achieved 100% accuracy compared to sequencing and in addition detected the presence of mixed infections in clinical samples. With its streamlined protocol and high accuracy, this malaria TAC should be a useful tool for large-scale antimalarial resistance surveillance.


2017 ◽  
Vol 61 (12) ◽  
Author(s):  
Alfred Amambua-Ngwa ◽  
Joseph Okebe ◽  
Haddijatou Mbye ◽  
Sukai Ceesay ◽  
Fatima El-Fatouri ◽  
...  

ABSTRACT Antimalarial interventions have yielded a significant decline in malaria prevalence in The Gambia, where artemether-lumefantrine (AL) has been used as a first-line antimalarial for a decade. Clinical Plasmodium falciparum isolates collected from 2012 to 2015 were analyzed ex vivo for antimalarial susceptibility and genotyped for drug resistance markers (pfcrt K76T, pfmdr1 codons 86, 184, and 1246, and pfk13) and microsatellite variation. Additionally, allele frequencies of single nucleotide polymorphisms (SNPs) from other drug resistance-associated genes were compared from genomic sequence data sets from 2008 (n = 79) and 2014 (n = 168). No artemisinin resistance-associated pfk13 mutation was found, and only 4% of the isolates tested in 2015 showed significant growth after exposure to dihydroartemisinin. Conversely, the 50% inhibitory concentrations (IC50s) of amodiaquine and lumefantrine increased within this period. pfcrt 76T and pfmdr1 184F mutants remained at a prevalence above 80%. pfcrt 76T was positively associated with higher IC50s to chloroquine. pfmdr1 NYD increased in frequency between 2012 and 2015 due to lumefantrine selection. The TNYD (pfcrt 76T and pfmdr1 NYD wild-type haplotype) also increased in frequency following AL implementation in 2008. These results suggest selection for pfcrt and pfmdr1 genotypes that enable tolerance to lumefantrine. Increased tolerance to lumefantrine calls for sustained chemotherapeutic monitoring in The Gambia to minimize complete artemisinin combination therapy (ACT) failure in the future.


2016 ◽  
Vol 61 (1) ◽  
Author(s):  
Mónica Guerra ◽  
Rita Neres ◽  
Patrícia Salgueiro ◽  
Cristina Mendes ◽  
Nicolas Ndong-Mabale ◽  
...  

ABSTRACT Efforts to control malaria may affect malaria parasite genetic variability and drug resistance, the latter of which is associated with genetic events that promote mechanisms to escape drug action. The worldwide spread of drug resistance has been a major obstacle to controlling Plasmodium falciparum malaria, and thus the study of the origin and spread of associated mutations may provide some insights into the prevention of its emergence. This study reports an analysis of P. falciparum genetic diversity, focusing on antimalarial resistance-associated molecular markers in two socioeconomically different villages in mainland Equatorial Guinea. The present study took place 8 years after a previous one, allowing the analysis of results before and after the introduction of an artemisinin-based combination therapy (ACT), i.e., artesunate plus amodiaquine. Genetic diversity was assessed by analysis of the Pfmsp2 gene and neutral microsatellite loci. Pfdhps and Pfdhfr alleles associated with sulfadoxine-pyrimethamine (SP) resistance and flanking microsatellite loci were investigated, and the prevalences of drug resistance-associated point mutations of the Pfcrt, Pfmdr1, Pfdhfr, and Pfdhps genes were estimated. Further, to monitor the use of ACT, we provide the baseline prevalences of K13 propeller mutations and Pfmdr1 copy numbers. After 8 years, noticeable differences occurred in the distribution of genotypes conferring resistance to chloroquine and SP, and the spread of mutated genotypes differed according to the setting. Regarding artemisinin resistance, although mutations reported as being linked to artemisinin resistance were not present at the time, several single nucleotide polymorphisms (SNPs) were observed in the K13 gene, suggesting that closer monitoring should be maintained to prevent the possible spread of artemisinin resistance in Africa.


2009 ◽  
Vol 53 (4) ◽  
pp. 1362-1366 ◽  
Author(s):  
Sant Muangnoicharoen ◽  
David J. Johnson ◽  
Sornchai Looareesuwan ◽  
Srivicha Krudsood ◽  
Stephen A. Ward

ABSTRACT Using a range of laboratory-adapted and genetically modified Plasmodium falciparum parasite isolates, we investigated the interaction between dihydroartemisinin and piperaquine (PIP), the individual components of an artemisinin combination therapy currently under development, in addition to the role of known drug resistance genes in parasite susceptibility in vitro. All but one parasite line investigated displayed an interaction of dihydroartemisinin and PIP that was antagonistic, although the degree of antagonism was isolate dependent. In terms of resistance markers, the pfcrt haplotypes CVIET and SVMNT were positively associated with reduced sensitivity to PIP, with parasites carrying the South American CQR (SVMNT) allele being generally less sensitive than CVIET parasites. Parasites carrying the CQS (CVMNK) allele displayed a further increase in PIP sensitivity compared with CVIET and SVMNT parasites. Our data indicate that PIP sensitivity was not affected by pfmdr1 sequence status, despite positive correlations between the structurally related compound amodiaquine and pfmdr1 mutations in other studies. In contrast, neither the pfcrt nor pfmdr1 sequence status had any significant impact on susceptibility to dihydroartemisinin.


2019 ◽  
Vol 18 (1) ◽  
Author(s):  
Bayode R. Adegbite ◽  
Jean R. Edoa ◽  
Yabo J. Honkpehedji ◽  
Frejus J. Zinsou ◽  
Jean C. Dejon-Agobe ◽  
...  

Abstract Background Malaria remains a major public health problem, affecting mainly low-and middle-income countries. The management of this parasitic disease is challenged by ever increasing drug resistance. This study, investigated the therapeutic efficacy, tolerability and safety of artemether–lumefantrine (AL) and artesunate–amodiaquine (AS–AQ), used as first-line drugs to treat uncomplicated malaria in Lambaréné, Gabon. Methods A non-randomized clinical trial was conducted between October 2017 and March 2018 to assess safety, clinical and parasitological efficacy of fixed-doses of AL and AS–AQ administered to treat uncomplicated Plasmodium falciparum malaria in children aged from 6 months to 12 years. After 50 children were treated with AL, another 50 children received ASAQ. The 2009 World Health Organization protocol for monitoring of the efficacy of anti‑malarial drugs was followed. Molecular markers msp1 and msp2 were used to differentiate recrudescence and reinfection. For the investigation of artemisinin resistant markers, gene mutations in Pfk13 were screened. Results Per-protocol analysis on day 28 showed a PCR corrected cure rate of 97% (95% CI 86–100) and 95% (95% CI 84–99) for AL and AS–AQ, respectively. The most frequent adverse event in both groups was asthenia. No mutations in the kelch-13 gene associated with artemisinin resistance were identified. All participants had completed microscopic parasite clearance by day 3 post-treatment. Conclusion This study showed that AL and AS–AQ remain efficacious, well-tolerated, and are safe to treat uncomplicated malaria in children from Lambaréné. However, a regular monitoring of efficacy and a study of molecular markers of drug resistance to artemisinin in field isolates is essential. Trial registration ANZCTR, ACTRN12616001600437. Registered 18 November, http://www.anzctr.org.au/TrialSearch.aspx?searchTxt=ACTRN12616001600437p&isBasic=True


Sign in / Sign up

Export Citation Format

Share Document