scholarly journals Thermo-sensitive electroactive hydrogel combined with electrical stimulation for repair of spinal cord injury

2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Wei Liu ◽  
Yiqian Luo ◽  
Cong Ning ◽  
Wenjing Zhang ◽  
Qingzheng Zhang ◽  
...  

AbstractThe strategy of using a combination of scaffold-based physical and biochemical cues to repair spinal cord injury (SCI) has shown promising results. However, integrating conductivity and neurotrophins into a scaffold that recreates the electrophysiologic and nutritional microenvironment of the spinal cord (SC) remains challenging. In this study we investigated the therapeutic potential of a soft thermo-sensitive polymer electroactive hydrogel (TPEH) loaded with nerve growth factor (NGF) combined with functional electrical stimulation (ES) for the treatment of SCI. The developed hydrogel exhibits outstanding electrical conductance upon ES, with continuous release of NGF for at least 24 days. In cultured nerve cells, TPEH loaded with NGF promoted the neuronal differentiation of neural stem cells and axonal growth, an effect that was potentiated by ES. In a rat model of SCI, TPEH combined with NGF and ES stimulated endogenous neurogenesis and improved motor function. These results indicate that the TPEH scaffold that combines ES and biochemical cues can effectively promote SC tissue repair.

2021 ◽  
Author(s):  
Wei Liu ◽  
Yiqian Luo ◽  
Cong Ning ◽  
Wenjing Zhang ◽  
Qingzheng Zhang ◽  
...  

Abstract The strategy of using a combination of scaffold-based physical and biochemical cues to repair spinal cord injury (SCI) has shown promising results. However, integrating conductivity and neurotrophins into a scaffold that recreates the electrophysiologic and nutritional microenvironment of the spinal cord (SC) remains challenging. In this study we investigated the therapeutic potential of a soft thermo-sensitive polymer electroactive hydrogel (TPEH) loaded with nerve growth factor (NGF) combined with functional electrical stimulation (ES) for the treatment of SCI. The developed hydrogel exhibits outstanding electrical conductance upon ES, with continuous release of NGF for at least 24 days. In cultured nerve cells, TPEH loaded with NGF promoted the neuronal differentiation of neural stem cells and axonal growth, an effect that was potentiated by ES. In a rat model of SCI, TPEH combined with NGF and ES stimulated endogenous neurogenesis and improved motor function. These results indicate that the TPEH scaffold that combines ES and biochemical cues can effectively promote SC tissue repair.


2020 ◽  
Vol 15 (4) ◽  
pp. 321-331 ◽  
Author(s):  
Zhe Gong ◽  
Kaishun Xia ◽  
Ankai Xu ◽  
Chao Yu ◽  
Chenggui Wang ◽  
...  

Spinal Cord Injury (SCI) causes irreversible functional loss of the affected population. The incidence of SCI keeps increasing, resulting in huge burden on the society. The pathogenesis of SCI involves neuron death and exotic reaction, which could impede neuron regeneration. In clinic, the limited regenerative capacity of endogenous cells after SCI is a major problem. Recent studies have demonstrated that a variety of stem cells such as induced Pluripotent Stem Cells (iPSCs), Embryonic Stem Cells (ESCs), Mesenchymal Stem Cells (MSCs) and Neural Progenitor Cells (NPCs) /Neural Stem Cells (NSCs) have therapeutic potential for SCI. However, the efficacy and safety of these stem cellbased therapy for SCI remain controversial. In this review, we introduce the pathogenesis of SCI, summarize the current status of the application of these stem cells in SCI repair, and discuss possible mechanisms responsible for functional recovery of SCI after stem cell transplantation. Finally, we highlight several areas for further exploitation of stem cells as a promising regenerative therapy of SCI.


Spinal Cord ◽  
2016 ◽  
Vol 54 (10) ◽  
pp. 785-797 ◽  
Author(s):  
H E Marei ◽  
A Althani ◽  
S Rezk ◽  
A Farag ◽  
S Lashen ◽  
...  

2019 ◽  
Vol 328 ◽  
pp. 5-19
Author(s):  
Ramil Hakim ◽  
Ruxandra Covacu ◽  
Vasilios Zachariadis ◽  
Arvid Frostell ◽  
Sreenivasa Sankavaram ◽  
...  

ASN NEURO ◽  
2021 ◽  
Vol 13 ◽  
pp. 175909142110106
Author(s):  
Ziling Liao ◽  
Wei Wang ◽  
Weiyue Deng ◽  
Yuying Zhang ◽  
Aishi Song ◽  
...  

Spinal cord injury (SCI) causes patients paralysis and hard to recover. The therapeutic effects of current clinical drugs are accompanied by side effects. In recent years, stem cell therapy has attracted the attention of researchers. Human umbilical cord mesenchymal stem cells (hucMSCs) have been widely used in various diseases due to their excellent paracrine function. TNF-stimulated gene 6 (TSG-6), a secretion factor of stem cells, may play an important role in hucMSCs in the treatment of SCI. So we conducted an experiment to explore its effect. We first observed that the expression of TSG-6 increased in SCI rats after injected with hucMSCs. Then, we used siRNA to knowdown the expression of TSG-6. We treated SCI rats with TSG-6-knockdown hucMSCs. Without TSG-6 expression, hucMSCs treatment made the tissue recovery worse and the number of Nissl bodies less. Meanwhile, neutrophils infiltrated more in the damaged parts. Our research also proved that TSG-6 may help demyelination recovering and alleviate astrocytes gathering in the injury sites. Our study revealed that hucMSCs secreted TSG-6 may decrease the degeneration of myelin sheath, reduce inflammation, decrease neuron loss and promote tissue repair. These results provided a new therapeutic factor for the treatment of SCI.


2020 ◽  
Vol 19 (5) ◽  
pp. 1099-1103
Author(s):  
Zhipeng Yao ◽  
Wenge Liu ◽  
Chenyang Song

Purpose: To study the effect of hydroxyapatite-collagen (HC) scaffold with mesenchymal stem cells (MSCs) on tissue repair in acute spinal cord  injury (SCI).Method: Adult female Sprague-Dawley rats weighing 200 - 230 g were randomly divided into two groups implanted either with bone marrow-MSCs (experimental group) or HC scaffold alone (control group). Spinal cord injury was induced using laminectomy, resulting in a 2.0-mm gap at T10 of the spinal cord. The gap was filled in both groups with 2-mm HC scaffold at day 10 of culture. Cellular development, viability, and proliferation inside the scaffold were determined. Angiogenesis was determined by measuring fibronectin (FN) immunofluorescence, von Willebrand factor (vWF), hypoxiainducible factor 1-alpha (HIF-1α) and vascular endothelial growth factor (VEGF).Results: HC scaffold strengthened MSCs. Bone marrow MSCs exhibited no statistically significant difference when compared with cells in culture at day 10 (47.03 ± 3.135 %, p > 0.05). Moreover, on days 5 and 10, FN deposition was higher in MSCs with scaffold than in scaffold-free MSCs. The expressions of FN, vWF, HIF-1α and VEGF were positively correlated, indicating that incorporation of HC scaffold into MSCs significantly improved tissue repair by improving angiogenesis via a differentiation process (p < 0.001).Conclusion: These findings suggest that HC scaffold with MSCs is a potential therapeutic procedure for spinal cord injury. Keywords: Mesenchymal stem cells, Hydroxyapatite-collagen, Spinal cord injury, HC scaffold


2018 ◽  
Vol 27 (3) ◽  
pp. 471-484 ◽  
Author(s):  
Li-Qun Zhang ◽  
Wen-Ming Zhang ◽  
Lingxiao Deng ◽  
Zi-Xing Xu ◽  
Wen-Bin Lan ◽  
...  

Transplantation of neural stem cells (NSCs) holds great potential for the treatment of spinal cord injury (SCI). However, transplanted NSCs poorly survive in the SCI environment. We injected NSCs into tibial nerve and transplanted tibial nerve into a hemisected spinal cord and investigated the effects of lithium chloride (LiCl) on the survival of spinal neurons, axonal regeneration, and functional recovery. Our results show that most of the transplanted NSCs expressed glial fibrillary acidic protein, while there was no obvious expression of nestin, neuronal nuclei, or acetyltransferase found in NSCs. LiCl treatment produced less macrosialin (ED1) expression and axonal degeneration in tibial nerve after NSC injection. Our results also show that a regimen of LiCl treatment promoted NSC differentiation into NF200-positive neurons with neurite extension into the host spinal cord. The combination of tibial nerve transplantation with NSCs and LiCl injection resulted in more host motoneurons surviving in the spinal cord, more regenerated axons in tibial nerve, less glial scar area, and decreased ED1 expression. We conclude that lithium may have therapeutic potential in cell replacement strategies for central nervous system injury due to its ability to promote survival and neuronal generation of grafted NSCs and reduced host immune reaction.


Sign in / Sign up

Export Citation Format

Share Document