scholarly journals Prediction of drug-target interactions from multi-molecular network based on LINE network representation method

2020 ◽  
Vol 18 (1) ◽  
Author(s):  
Bo-Ya Ji ◽  
Zhu-Hong You ◽  
Han-Jing Jiang ◽  
Zhen-Hao Guo ◽  
Kai Zheng

Abstract Background The prediction of potential drug-target interactions (DTIs) not only provides a better comprehension of biological processes but also is critical for identifying new drugs. However, due to the disadvantages of expensive and high time-consuming traditional experiments, only a small section of interactions between drugs and targets in the database were verified experimentally. Therefore, it is meaningful and important to develop new computational methods with good performance for DTIs prediction. At present, many existing computational methods only utilize the single type of interactions between drugs and proteins without paying attention to the associations and influences with other types of molecules. Methods In this work, we developed a novel network embedding-based heterogeneous information integration model to predict potential drug-target interactions. Firstly, a heterogeneous multi-molecuar information network is built by combining the known associations among protein, drug, lncRNA, disease, and miRNA. Secondly, the Large-scale Information Network Embedding (LINE) model is used to learn behavior information (associations with other nodes) of drugs and proteins in the network. Hence, the known drug-protein interaction pairs can be represented as a combination of attribute information (e.g. protein sequences information and drug molecular fingerprints) and behavior information of themselves. Thirdly, the Random Forest classifier is used for training and prediction. Results In the results, under the five-fold cross validation, our method obtained 85.83% prediction accuracy with 80.47% sensitivity at the AUC of 92.33%. Moreover, in the case studies of three common drugs, the top 10 candidate targets have 8 (Caffeine), 7 (Clozapine) and 6 (Pioglitazone) are respectively verified to be associated with corresponding drugs. Conclusions In short, these results indicate that our method can be a powerful tool for predicting potential drug-target interactions and finding unknown targets for certain drugs or unknown drugs for certain targets.

2020 ◽  
Author(s):  
Bo-Ya Ji ◽  
Zhu-Hong You ◽  
Han-Jing Jiang ◽  
Zhen-Hao Guo ◽  
Kai Zheng

Abstract Background: The prediction of potential drug-protein target interactions (DTIs) not only provides a better comprehension of biological processes but also is critical for identifying new drugs. However, due to the disadvantages of expensive and high time-consuming traditional experiments, only a small section of interactions between drugs and targets in the database were verified experimentally. Therefore, it is meaningful and important to develop new computational methods with good performance for DTIs prediction. At present, many existing computational methods only utilize the single type of interactions between drugs and proteins without paying attention to the associations and influences with other types of molecules. Methods: In this work, we developed a novel network embedding-based heterogeneous information integration model to predict potential drug-target interactions. Firstly, a heterogeneous information network is built by combining the known associations among protein, drug, lncRNA, disease, and miRNA. Secondly, the Large-scale Information Network Embedding (LINE) model is used to learn behavior information (associations with other nodes) of drugs and proteins in the network. Hence, the known drug-protein interaction pairs can be represented as a combination of attribute information (e.g. protein sequences information and drug molecular fingerprints) and behavior information of themselves. Thirdly, the Random Forest classifier is used for training and prediction. Results: In the results, under the 5-fold cross validation, our method obtained 85.83% prediction accuracy with 80.47% sensitivity at the AUC of 92.33%. Moreover, in the case studies of three common drugs, the top 10 candidate targets have 8 (Caffeine), 7 (Clozapine) and 6 (Pioglitazone) are respectively verified to be associated with corresponding drugs. Conclusions: In short, these results indicate that our method can be a powerful tool for predicting potential drug-protein interactions and finding unknown targets for certain drugs or unknown drugs for certain targets.


2020 ◽  
Author(s):  
Bo-Ya Ji ◽  
Zhu-Hong You ◽  
Han-Jing Jiang ◽  
Zhen-Hao Guo ◽  
Kai Zheng

Abstract Background: The prediction of potential drug-protein target interactions (DTIs) not only provides a better comprehension of biological processes but also is critical for identifying new drugs. However, due to the disadvantages of costly and high time-consuming traditional experiments, only a small section of interactions between drugs and targets in the database is verified experimentally. Therefore, it is meaningful and important to develop new computational methods with good performance for predicting DTIs. At present, many existing computational methods only utilize a single type of molecule without paying attention to the interactions and influences between other types of molecules. Methods: In this work, we developed a novel network embedding-based heterogeneous information integration model to predict potential DTIs. Firstly, a heterogeneous information network is built by combining the known associations among protein, drug, lncRNA, disease, and miRNA. Secondly, the Large-scale Information Network Embedding (LINE) model is used to learn behavior information of nodes in the network. Hence, the known drug-protein interaction pairs can be represented as a combination of attribute information (e.g. protein sequences information and drug molecular fingerprints) and behavior information of themselves. Thirdly, the Random Forest classifier is used for training and predicting. Results: In the results, under the 5-fold cross validation, our method obtained 85.83% prediction accuracy with 80.47% sensitivity at the AUC of 92.33%. Moreover, in the case studies of three common drugs, the top 10 candidate targets have 8 (Caffeine), 7 (Clozapine) and 6 (Pioglitazone) are respectively verified to be associated with corresponding drugs. Conclusions: In short, these results indicate that our method can be a powerful tool for predicting drug-protein interactions and finding unknown targets for certain drugs or unknown drugs for certain targets.


Parasitology ◽  
2013 ◽  
Vol 141 (1) ◽  
pp. 37-49 ◽  
Author(s):  
EDWARD W. TATE ◽  
ANDREW S. BELL ◽  
MARK D. RACKHAM ◽  
MEGAN H. WRIGHT

SUMMARYInfections caused by protozoan parasites are among the most widespread and intractable transmissible diseases affecting the developing world, with malaria and leishmaniasis being the most costly in terms of morbidity and mortality. Although new drugs are urgently required against both diseases in the face of ever-rising resistance to frontline therapies, very few candidates passing through development pipelines possess a known and novel mode of action. Set in the context of drugs currently in use and under development, we present the evidence for N-myristoyltransferase (NMT), an enzyme that N-terminally lipidates a wide range of specific target proteins through post-translational modification, as a potential drug target in malaria and the leishmaniases. We discuss the limitations of current knowledge regarding the downstream targets of this enzyme in protozoa, and our recent progress towards potent cell-active NMT inhibitors against the most clinically-relevant species of parasite. Finally, we outline the next steps required in terms of both tools to understand N-myristoylation in protozoan parasites, and the generation of potential development candidates based on the output of our recently-reported high-throughput screens.


F1000Research ◽  
2019 ◽  
Vol 8 ◽  
pp. 33
Author(s):  
DJ Darwin Bandoy

Enterohemorrhagic Escherichia coli continues to be a significant public health risk. With the onset of next generation sequencing, whole genome sequences require a new paradigm of analysis relevant for epidemiology and drug discovery. A large-scale bacterial population genomic analysis was applied to 702 isolates of serotypes associated with EHEC resulting in five pangenome clusters. Serotype incongruence with pangenome types suggests recombination clusters. Core genome analysis was performed to determine the population wide distribution of sdiA as potential drug target. Protein modelling revealed nonsynonymous variants are notably absent in the ligand binding site for quorum sensing, indicating that population wide conservation of the sdiA ligand site can be targeted for potential prophylactic purposes. Applying pathotype-wide pangenomics as a guide for determining evolution of pharmacophore sites is a potential approach in drug discovery.


F1000Research ◽  
2020 ◽  
Vol 8 ◽  
pp. 33
Author(s):  
DJ Darwin Bandoy

Enterohemorrhagic Escherichia coli continues to be a significant public health risk. With the onset of next generation sequencing, whole genome sequences require a new paradigm of analysis relevant for epidemiology and drug discovery. A large-scale bacterial population genomic analysis was applied to 702 isolates of serotypes associated with EHEC resulting in five pangenome clusters. Serotype incongruence with pangenome types suggests recombination clusters. Core genome analysis was performed to determine the population wide distribution of sdiA as potential drug target. Protein modelling revealed nonsynonymous variants are notably absent in the ligand binding site for quorum sensing, indicating that population wide conservation of the sdiA ligand site can be targeted for potential prophylactic purposes. Applying pathotype-wide pangenomics as a guide for determining evolution of pharmacophore sites is a potential approach in drug discovery.


2013 ◽  
Vol 19 (14) ◽  
pp. 2637-2648 ◽  
Author(s):  
Ana Serrano ◽  
Patricia Ferreira ◽  
Marta Martinez-Julvez ◽  
Milagros Medina

Sign in / Sign up

Export Citation Format

Share Document