scholarly journals Histological validation of cardiovascular magnetic resonance T1 mapping markers of myocardial fibrosis in paediatric heart transplant recipients

Author(s):  
Seiko Ide ◽  
Eugenie Riesenkampff ◽  
David A. Chiasson ◽  
Anne I. Dipchand ◽  
Paul F. Kantor ◽  
...  
Author(s):  
Christopher A Miller ◽  
Jennifer H Jordan ◽  
Annalisa Angelini ◽  
W Gregory Hundley ◽  
Matthias Schmitt

Heart transplant recipients present with a unique set of anatomical and pathophysiological considerations. Cardiac allograft disease often presents non-specifically, requiring a low index for further investigation. Accurate assessment with standard imaging modalities can be difficult, and cardiovascular magnetic resonance (CMR) is increasingly requested for further clarification. The anatomy of the transplanted heart, common transplant pathologies, and the role of CMR are described.


2021 ◽  
Vol 8 ◽  
Author(s):  
Wei Sun ◽  
Xuehua Shen ◽  
Jing Wang ◽  
Shuangshuang Zhu ◽  
Yanting Zhang ◽  
...  

Objective: This study aimed to: (1) evaluate the association between myocardial fibrosis (MF) quantified by extracellular volume fraction (ECV) and myocardial strain measured by two-dimensional (2D)- and three-dimensional speckle-tracking echocardiography (3D-STE) and (2) further investigate which strain parameter measured by 2D- and 3D-STE is the more robust predictor of MF in heart transplant (HT) recipients.Methods: A total of 40 patients with HT and 20 healthy controls were prospectively enrolled. Left ventricular (LV)-global longitudinal strain (GLS), global circumferential strain (GCS), and global radial strain (GRS) were measured by 2D- and 3D-STE. LV diffuse MF was defined by cardiovascular magnetic resonance (CMR)-ECV.Results: The HT recipients had a significantly higher native T1 and ECV than healthy controls (1043.8 ± 34.0 vs. 999.7 ± 19.7 ms, p < 0.001; 26.6 ± 2.7 vs. 24.3 ± 1.8%, p = 0.02). The 3D- and 2D-STE-LVGLS and LVGCS were lower (p < 0.005) in the HT recipients than in healthy controls. ECV showed a moderate correlation with 2D-LVGLS (r = 0.53, p = 0.002) and 3D-LVGLS (r = 0.60, p < 0.001), but it was not correlated with 2D or 3D-LVGCS, or LVGRS. Furthermore, 3D-LVGLS and 2D-LVGLS had a similar correlation with CMR-ECV (r = 0.60 vs. 0.53, p = 0.670). A separate stepwise multivariate linear analysis showed that both the 2D-LVGLS (β = 0.39, p = 0.019) and 3D-LVGLS (β = 0.54, p < 0.001) were independently associated with CMR-ECV.Conclusion: CMR marker of diffuse MF was present in asymptomatic patients with HT and appeared to be associated with decreased myocardial strain by echocardiography. Both the 2D- and 3D-LVGLS were independently correlated with diffuse LVMF, which may provide an alternative non-invasive tool for monitoring the development of adverse fibrotic remodeling during the follow-up of HT recipients.


1996 ◽  
Vol 7 (8) ◽  
pp. 591-598 ◽  
Author(s):  
Raad H. Mohiaddin ◽  
H. G. Bogren ◽  
F. Lazim ◽  
J. Keegan ◽  
P. D. Gatehouse ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Sophie I. Mavrogeni ◽  
Flora Bacopoulou ◽  
George Markousis-Mavrogenis ◽  
Aikaterini Giannakopoulou ◽  
Ourania Kariki ◽  
...  

Diabetes mellitus can independently contribute to cardiovascular disease and represents a severe risk factor for premature development of cardiovascular disease. A three-fold higher mortality than the general population has been observed in type 1 diabetes mellitus whereas a two- to four-fold increased probability to develop cardiovascular disease has been observed in type 2 diabetes mellitus. Cardiovascular magnetic resonance, a non-radiative modality, is superior to all other modalities in detecting myocardial infarction. The main cardiovascular magnetic resonance sequences used include a) balanced steady-state free precession (bSSFP) for function evaluation; b) T2-W for oedema detection; c) T1 W for ischemia detection during adenosine stress; and d) late gadolinium enhanced T1-W images (LGE), evaluated 15 min after injection of paramagnetic contrast agent gadolinium, which permit the diagnosis of replacement fibrosis, which appears white in the middle of suppressed, nulled myocardium. Although LGE is the technique of choice for diagnosis of replacement fibrosis, it cannot assess diffuse myocardial fibrosis. The application of T1 mapping (native or pre contrast and post contrast) allows identification of diffuse myocardial fibrosis, which is not detectable my other means. Native T1 and Contrast-enhanced T1 mapping are involved in the extracellular volume fraction (ECV) calculation. Recently, 1H-cardiovascular magnetic resonance spectroscopy has been applied to calculate the amount of myocardial triglycerides, but at the moment it is not part of the routine assessment of diabetes mellitus. The multifaceted nature of cardiovascular magnetic resonance has the great potential of concurrent evaluation of function and myocardial ischemia/fibrosis in the same examination and represents an indispensable tool for accurate diagnosis of cardiovascular disease in diabetes mellitus.


Sign in / Sign up

Export Citation Format

Share Document