scholarly journals Association Between 2D- and 3D-Speckle-Tracking Longitudinal Strain and Cardiovascular Magnetic Resonance Evidence of Diffuse Myocardial Fibrosis in Heart Transplant Recipients

2021 ◽  
Vol 8 ◽  
Author(s):  
Wei Sun ◽  
Xuehua Shen ◽  
Jing Wang ◽  
Shuangshuang Zhu ◽  
Yanting Zhang ◽  
...  

Objective: This study aimed to: (1) evaluate the association between myocardial fibrosis (MF) quantified by extracellular volume fraction (ECV) and myocardial strain measured by two-dimensional (2D)- and three-dimensional speckle-tracking echocardiography (3D-STE) and (2) further investigate which strain parameter measured by 2D- and 3D-STE is the more robust predictor of MF in heart transplant (HT) recipients.Methods: A total of 40 patients with HT and 20 healthy controls were prospectively enrolled. Left ventricular (LV)-global longitudinal strain (GLS), global circumferential strain (GCS), and global radial strain (GRS) were measured by 2D- and 3D-STE. LV diffuse MF was defined by cardiovascular magnetic resonance (CMR)-ECV.Results: The HT recipients had a significantly higher native T1 and ECV than healthy controls (1043.8 ± 34.0 vs. 999.7 ± 19.7 ms, p < 0.001; 26.6 ± 2.7 vs. 24.3 ± 1.8%, p = 0.02). The 3D- and 2D-STE-LVGLS and LVGCS were lower (p < 0.005) in the HT recipients than in healthy controls. ECV showed a moderate correlation with 2D-LVGLS (r = 0.53, p = 0.002) and 3D-LVGLS (r = 0.60, p < 0.001), but it was not correlated with 2D or 3D-LVGCS, or LVGRS. Furthermore, 3D-LVGLS and 2D-LVGLS had a similar correlation with CMR-ECV (r = 0.60 vs. 0.53, p = 0.670). A separate stepwise multivariate linear analysis showed that both the 2D-LVGLS (β = 0.39, p = 0.019) and 3D-LVGLS (β = 0.54, p < 0.001) were independently associated with CMR-ECV.Conclusion: CMR marker of diffuse MF was present in asymptomatic patients with HT and appeared to be associated with decreased myocardial strain by echocardiography. Both the 2D- and 3D-LVGLS were independently correlated with diffuse LVMF, which may provide an alternative non-invasive tool for monitoring the development of adverse fibrotic remodeling during the follow-up of HT recipients.

Circulation ◽  
2020 ◽  
Vol 142 (Suppl_3) ◽  
Author(s):  
Mingxing XIE ◽  
Sun Wei ◽  
Zhang Li ◽  
Wu chun ◽  
Lv Qing

Background: Myocardial fibrosis (MF) is a well-described histopathologic featurein patients after heart transplant (HT). The two-dimensional speckle-tracking echocardiography (2D-STE) derived strain has been reported as a noninvasive tool to predict myocardial fibrosis (MF). Nevertheless, the relation between three-dimensional (3D)-myocardial strain and MF, and which directions of strain components correlated best with MF in HT recipients have not been reported. Objective: The study aimed to 1) explore whether diffuse left ventricular (LV) MF defined by cardiovascular magnetic resonance (CMR)- extracellular volume fraction (ECV) is expanded; 2) evaluate the association between LV MF and LV strain measured by 2D- and 3D-STE, and investigate which strain parameter is the more robust predictor of LV MF in patients after HT. Methods: A total of 60 subjects (40 patients after HT and 20 healthy controls) were prospectively enrolled. All subjects underwent the 2D, 3D echocardiography and CMR examination. The LV ejection fraction (EF) was measured by 3D-STE. The LV- global longitudinal strain (GLS), global circumferential strain (GCS) and global radial strain (GRS) were measured by 2D- and 3D-STE. And LV diffuse MF was defined by ECV using the modified Look-Locker inversion recovery (MOLLI) sequence. Results: The HT recipients had higher native T1 and ECV than healthy controls (1042.8±35.3ms vs 1006.3±19.6ms, p<0.001; 26.8±3.4% vs 24.6±1.3%, p=0.02). And compared with healthy controls, the 3D-GLS, 3D-GCS, 3D-GRS and 2D-GLS were all lower (p<.005) in the HT recipients. But 3D-LVEF was similar in HT patients and healthy controls. And in the HT group, the increased ECV only correlated with 2D-GLS (r=0.57, p=0.001) and 3D-GLS (r=0.51, p < 0.001), not correlated with 2D- and 3D-GCS, GRS. The separate stepwise multivariate analysis showed that both 2D-GLS (β=0.74, p=0.001) and 3D-GLS (β=0.69, p < 0.001) were independently associated with LVECV. Conclusions: Patients after HT have higher LV MF and reduced LV strain compared with control subjects. Moreover, both 2D- and 3D-GLS are the independent predictor of diffuse LV MF. Therefore, the measurement 2D- and 3D-GLS may be provide a noninvasive assessment of LV MF in the transplanted hearts.


2020 ◽  
Vol 14 (11) ◽  
pp. e0008795
Author(s):  
Minna Moreira Dias Romano ◽  
Henrique Turin Moreira ◽  
José Antônio Marin-Neto ◽  
Priscila Elias Baccelli ◽  
Fawaz Alenezi ◽  
...  

Chagas disease (CD) will account for 200,000 cardiovascular deaths worldwide over the next 5 years. Early detection of chronic Chagas cardiomyopathy (CCC) is a challenge. We aimed to test if speckle-tracking echocardiography (STE) can detect incipient myocardial damage in CD. METHODS: Among 325 individuals with positive serological tests, 25 (age 55±12yrs) were selected to compose the group with indeterminate form of Chagas disease (IFCD), based on stringent criteria of being asymptomatic and with normal EKG/X-ray studies. This group was compared with a group of 20 patients with CCC (55±11yrs) and a group of 20 non-infected matched control (NC) subjects (48±10yrs). CD patients and NC were submitted to STE and CD patients were submitted to cardiac magnetic resonance (CMR) with late gadolinium administration to detect cardiac fibrosis by the late enhancement technique. Global longitudinal strain (GLS), circumferential (GCS) and radial strain (GRS) were defined as the average of segments measured from three apical view (GLS) and short axis views (GRS and GCS). Regional left ventricular (LV) longitudinal strain (Reg LS) was measured from each of the 17 segments. Twist was measured as systolic peak difference between basal and apical rotation and indexed to LV length to express torsion. RESULTS: STE global indices (GLS, GCS, twist and torsion) were reduced in CCC vs NC (GLS: -14±6.3% vs -19.3±1.6%, p = 0.001; GCS: -13.6±5.2% vs -17.3 ±2.8%; p = 0.008; twist: 8±7° vs 14±7°, p = 0.01 and torsion: 0.96±1°/cm vs 1.9±1°/cm, p = 0.005), but showed no differences in IFCD vs NC. RegLS was reduced in IFCD vs NC in four LV segments: basal-inferior (-16.3±3.3% vs -18.6±2.2%, p = 0.013), basal inferoseptal (-13.1±3.4 vs -15.2±2.7, p = 0.019), mid-inferoseptal (-17.7±3.2 vs -19.4±2, p = 0.032) and mid-inferolateral (-15.2±3.5 vs -17.8±2.8, p = 0.014). These abnormalities in RegLS occurred in the absence of myocardial fibrosis detectable with CMR in nearly 92% of subjects with IFCD, while myocardial fibrosis was present in 65% with CCC. CONCLUSION: RegLS detects early regional impairment of myocardial strain that is independent from fibrosis in IFCD subjects.


2021 ◽  
Vol 23 (1) ◽  
Author(s):  
Janek Salatzki ◽  
Isabelle Mohr ◽  
Jannick Heins ◽  
Mert H. Cerci ◽  
Andreas Ochs ◽  
...  

Abstract Background Systemic effects of altered serum copper processing in Wilson Disease (WD) might induce myocardial copper deposition and consequently myocardial dysfunction and structural remodeling. This study sought to investigate the prevalence, manifestation and predictors of myocardial tissue abnormalities in WD patients. Methods We prospectively enrolled WD patients and an age-matched group of healthy individuals. We applied cardiovascular magnetic resonance (CMR) to analyze myocardial function, strain, and tissue characteristics. A subgroup analysis of WD patients with predominant neurological (WD-neuro+) or hepatic manifestation only (WD-neuro−) was performed. Results Seventy-six patients (37 years (27–49), 47% women) with known WD and 76 age-matched healthy control subjects were studied. The prevalence of atrial fibrillation in WD patients was 5% and the prevalence of symptomatic heart failure was 2.6%. Compared to healthy controls, patients with WD had a reduced left ventricular global circumferential strain (LV-GCS), and also showed abnormalities consistent with global and regional myocardial fibrosis. WD-neuro+ patients presented with more severe structural remodeling and functional impairment when compared to WD-neuro− patients. Conclusions In a large cohort, WD was not linked to a distinct cardiac phenotype except CMR indexes of myocardial fibrosis. More research is warranted to assess the prognostic implications of these findings. Trial registration: This trial is registered at the local institutional ethics committee (S-188/2018).


Circulation ◽  
2020 ◽  
Vol 142 (Suppl_3) ◽  
Author(s):  
Mingxing XIE ◽  
TiAN Fangyan ◽  
Li Yuman

Background: Previous studies showed that 2-dimensional speckle-tracking echocardiography (2D-STE) correlates with the extent of left ventricular(LV)myocardial fibrosis (MF). However, the utility of 3D-STE in predicting LV MF remains unknown. We aimed to identify which LV strain assessed by 2D- and 3D-STE is the most reliable parameter to predict LV MF in patients with end-stage HF. Methods: 105 patients with end-stage HF undergoing heart transplantation were enrolled in our study. LV global longitudinal strain (GLS), global circumferential strain (GCS) and global radial strain (GRS) were measured by 2D- and 3D-STE. LV ejection fraction (EF) was determined by 3D-STE.The degree of MF was quantified by using Masson trichrome stain in LV myocardial samples. The study population was divided into 3 groups according to the degree of MF on histology (mild, moderate, and severe MF). Results: Patients with severe MF had lower 2D-STE, 3D-STE, and LVEF compared with those with mild and moderate MF. LV MF strongly correlated with 3D-LVGLS (r =0.73; P < 0.001), modestly with 3D-LVGRS (r =0.53; P< 0.001), weakly with 2D-LVGLS (r =0.49, P<0.001), 3D-LVGCS(r = 0.37, P <0.01), and LVEF (r =-0.46, P<0.001), but did not correlated with 2D-LVGCS and 2D-LVGRS. 3D-LVGLS correlated best with the degree of MF (r = 0.73 vs 0.37~0.53; P<0.05) compared with other 2D- and 3D-STE, and LVEF. 3D-LVGLS had the highest accuracy for detecting severe MF (area under the curve 0.90 VS 0.62~0.80; P< 0.05) compared with the 2D- and 3D-STE, and LVEF. Stepwise multivariate analysis showed that 3D-LVGLS (β=0.79, p < 0.001) was the only independent predictor of the degree of MF. Conclusion: 3D-LVGLS may be an ideal surrogate marker for LV MF in patients with end-stage HF.


2020 ◽  
Vol 22 (1) ◽  
Author(s):  
Johan Kihlberg ◽  
Vikas Gupta ◽  
Henrik Haraldsson ◽  
Andreas Sigfridsson ◽  
Sebastian I. Sarvari ◽  
...  

Abstract Background Several cardiovascular magnetic resonance (CMR) techniques can measure myocardial strain and torsion with high accuracy. The purpose of this study was to compare displacement encoding with stimulated echoes (DENSE), tagging and feature tracking (FT) for measuring circumferential and radial myocardial strain and myocardial torsion in order to assess myocardial function and infarct scar burden both at a global and at a segmental level. Method 116 patients with a high likelihood of coronary artery disease (European SCORE > 15%) underwent CMR examination including cine images, tagging, DENSE and late gadolinium enhancement (LGE) in the short axis direction. In total, 97 patients had signs of myocardial disease and 19 had no abnormalities in terms of left ventricular (LV) wall mass index, LV ejection fraction, wall motion, LGE or a history of myocardial infarction. Thirty-four patients had myocardial infarct scar with a transmural LGE extent (transmurality) that exceeded 50% of the wall thickness in at least one segment. Global circumferential strain (GCS) and global radial strain (GRS) was analyzed using FT of cine loops, deformation of tag lines or DENSE displacement. Results DENSE and tagging both showed high sensitivity (82% and 71%) at a specificity of 80% for the detection of segments with > 50% LGE transmurality, and receiver operating characteristics (ROC) analysis showed significantly higher area under the curve-values (AUC) for DENSE (0.87) than for tagging (0.83, p < 0.001) and FT (0.66, p = 0.003). GCS correlated with global LGE when determined with DENSE (r = 0.41), tagging (r = 0.37) and FT (r = 0.15). GRS had a low but significant negative correlation with LGE; DENSE r = − 0.10, FT r = − 0.07 and tagging r = − 0.16. Torsion from DENSE and tagging had a weak correlation (− 0.20 and − 0.22 respectively) with global LGE. Conclusion Circumferential strain from DENSE detected segments with > 50% scar with a higher AUC than strain determined from tagging and FT at a segmental level. GCS and torsion computed from DENSE and tagging showed similar correlation with global scar size, while when computed from FT, the correlation was lower.


Sign in / Sign up

Export Citation Format

Share Document