scholarly journals Prognostic utility of differential tissue characterization of cardiac neoplasm and thrombus via late gadolinium enhancement cardiovascular magnetic resonance among patients with advanced systemic cancer

Author(s):  
Angel T. Chan ◽  
Andrew J. Plodkowski ◽  
Shawn C. Pun ◽  
Yuliya Lakhman ◽  
Darragh F. Halpenny ◽  
...  
Author(s):  
Qiang Zhang ◽  
Matthew K. Burrage ◽  
Elena Lukaschuk ◽  
Mayooran Shanmuganathan ◽  
Iulia A. Popescu ◽  
...  

Background: Late gadolinium enhancement (LGE) cardiovascular magnetic resonance (CMR) imaging is the gold standard for non-invasive myocardial tissue characterization, but requires intravenous contrast agent administration. It is highly desired to develop a contrast-agent-free technology to replace LGE for faster and cheaper CMR scans. Methods: A CMR Virtual Native Enhancement (VNE) imaging technology was developed using artificial intelligence. The deep learning model for generating VNE uses multiple streams of convolutional neural networks to exploit and enhance the existing signals in native T1-maps (pixel-wise maps of tissue T1 relaxation times) and cine imaging of cardiac structure and function, presenting them as LGE-equivalent images. The VNE generator was trained using generative adversarial networks. This technology was first developed on CMR datasets from the multi-center Hypertrophic Cardiomyopathy Registry (HCMR), using HCM as an exemplar. The datasets were randomized into two independent groups for deep learning training and testing. The test data of VNE and LGE were scored and contoured by experienced human operators to assess image quality, visuospatial agreement and myocardial lesion burden quantification. Image quality was compared using nonparametric Wilcoxon test. Intra- and inter-observer agreement was analyzed using intraclass correlation coefficients (ICC). Lesion quantification by VNE and LGE were compared using linear regression and ICC. Results: 1348 HCM patients provided 4093 triplets of matched T1-maps, cines, and LGE datasets. After randomization and data quality control, 2695 datasets were used for VNE method development, and 345 for independent testing. VNE had significantly better image quality than LGE, as assessed by 4 operators (n=345 datasets, p<0.001, Wilcoxon test). VNE revealed characteristic HCM lesions in high visuospatial agreement with LGE. In 121 patients (n=326 datasets), VNE correlated with LGE in detecting and quantifying both hyper-intensity myocardial lesions (r=0.77-0.79, ICC=0.77-0.87; p<0.001) and intermediate-intensity lesions (r=0.70-0.76, ICC=0.82-0.85; p<0.001). The native CMR images (cine plus T1-map) required for VNE can be acquired within 15 minutes. Producing a VNE image takes less than one second. Conclusions: VNE is a new CMR technology that resembles conventional LGE, without the need for contrast administration. VNE achieved high agreement with LGE in the distribution and quantification of lesions, with significantly better image quality.


2021 ◽  
Vol 23 (1) ◽  
Author(s):  
Angel T. Chan ◽  
William Dinsfriend ◽  
Jiwon Kim ◽  
Brian Yum ◽  
Razia Sultana ◽  
...  

Abstract Background Late gadolinium enhancement (LGE) cardiovascular magnetic resonance (CMR) is widely used to identify cardiac neoplasms, for which diagnosis is predicated on enhancement stemming from lesion vascularity: Impact of contrast-enhancement pattern on clinical outcomes is unknown. The objective of this study was to determine whether cardiac metastasis (CMET) enhancement pattern on LGE-CMR impacts prognosis, with focus on heterogeneous lesion enhancement as a marker of tumor avascularity. Methods Advanced (stage IV) systemic cancer patients with and without CMET matched (1:1) by cancer etiology underwent a standardized CMR protocol. CMET was identified via established LGE-CMR criteria based on lesion enhancement; enhancement pattern was further classified as heterogeneous (enhancing and non-enhancing components) or diffuse and assessed via quantitative (contrast-to-noise ratio (CNR); signal-to-noise ratio (SNR)) analyses. Embolic events and mortality were tested in relation to lesion location and contrast-enhancement pattern. Results 224 patients were studied, including 112 patients with CMET and unaffected (CMET -) controls matched for systemic cancer etiology/stage. CMET enhancement pattern varied (53% heterogeneous, 47% diffuse). Quantitative analyses were consistent with lesion classification; CNR was higher and SNR lower in heterogeneously enhancing CMET (p < 0.001)—paralleled by larger size based on linear dimensions (p < 0.05). Contrast-enhancement pattern did not vary based on lesion location (p = NS). Embolic events were similar between patients with diffuse and heterogeneous lesions (p = NS) but varied by location: Patients with right-sided lesions had threefold more pulmonary emboli (20% vs. 6%, p = 0.02); those with left-sided lesions had lower rates equivalent to controls (4% vs. 5%, p = 1.00). Mortality was higher among patients with CMET (hazard ratio [HR] = 1.64 [CI 1.17–2.29], p = 0.004) compared to controls, but varied by contrast-enhancement pattern: Diffusely enhancing CMET had equivalent mortality to controls (p = 0.21) whereas prognosis was worse with heterogeneous CMET (p = 0.005) and more strongly predicted by heterogeneous enhancement (HR = 1.97 [CI 1.23–3.15], p = 0.005) than lesion size (HR = 1.11 per 10 cm [CI 0.53–2.33], p = 0.79). Conclusions Contrast-enhancement pattern and location of CMET on CMR impacts prognosis. Embolic events vary by CMET location, with likelihood of PE greatest with right-sided lesions. Heterogeneous enhancement—a marker of tumor avascularity on LGE-CMR—is a novel marker of increased mortality risk.


Sign in / Sign up

Export Citation Format

Share Document