scholarly journals Accuracy of stroke volume measurement with phase-contrast cardiovascular magnetic resonance in patients with aortic stenosis

2021 ◽  
Vol 23 (1) ◽  
Author(s):  
Ezequiel Guzzetti ◽  
Hugo-Pierre Racine ◽  
Lionel Tastet ◽  
Mylène Shen ◽  
Eric Larose ◽  
...  

Abstract Background Phase contrast (PC) cardiovascular magnetic resonance (CMR) in the ascending aorta (AAo) is widely used to calculate left ventricular (LV) stroke volume (SV). The accuracy of PC CMR may be altered by turbulent flow. Measurement of SV at another site is suggested in the presence of aortic stenosis, but very few data validates the accuracy or inaccuracy of PC in that setting. Our objective is to compare flow measurements obtained in the AAo and LV outflow tract (LVOT) in patients with aortic stenosis. Methods Retrospective analysis of patients with aortic stenosis who had CMR and echocardiography. Patients with mitral regurgitation were excluded. PC in the AAo and LVOT were acquired to derive SV. LV SV from end-systolic and end-diastolic tracings was used as the reference measure. A difference ≥ 10% between the volumetric method and PC derived SVs was considered discordant. Metrics of turbulence and jet eccentricity were assessed to explore the predictors of discordant measurements. Results We included 88 patients, 41% with bicuspid aortic valve. LVOT SV was concordant with the volumetric method in 79 (90%) patients vs 52 (59%) patients for AAo SV (p = 0.015). In multivariate analysis, aortic stenosis flow jet angle was a strong predictor of discordant measurement in the AAo (p = 0.003). Mathematical correction for the jet angle improved the concordance from 59 to 91%. Concordance was comparable in patients with bicuspid and trileaflet valves (57% and 62% concordance respectively; p = 0.11). Accuracy of SV measured in the LVOT was not influenced by jet eccentricity. For aortic regurgitation quantification, PC in the AAo had better correlation to volumetric assessments than LVOT PC. Conclusion LVOT PC SV in patients with aortic stenosis and eccentric jet might be more accurate compared to the AAo SV. Mathematical correction for the jet angle in the AAo might be another alternative to improve accuracy.

2021 ◽  
Vol 23 (1) ◽  
Author(s):  
Haotian Gu ◽  
Rong Bing ◽  
Calvin Chin ◽  
Lingyun Fang ◽  
Audrey C. White ◽  
...  

Abstract Background First-phase ejection fraction (EF1; the ejection fraction measured during active systole up to the time of maximal aortic flow) measured by transthoracic echocardiography (TTE) is a powerful predictor of outcomes in patients with aortic stenosis. We aimed to assess whether cardiovascular magnetic resonance (CMR) might provide more precise measurements of EF1 than TTE and to examine the correlation of CMR EF1 with measures of fibrosis. Methods In 141 patients with at least mild aortic stenosis, we measured CMR EF1 from a short-axis 3D stack and compared its variability with TTE EF1, and its associations with myocardial fibrosis and clinical outcome (aortic valve replacement (AVR) or death). Results Intra- and inter-observer variation of CMR EF1 (standard deviations of differences within and between observers of 2.3% and 2.5% units respectively) was approximately 50% that of TTE EF1. CMR EF1 was strongly predictive of AVR or death. On multivariable Cox proportional hazards analysis, the hazard ratio for CMR EF1 was 0.93 (95% confidence interval 0.89–0.97, p = 0.001) per % change in EF1 and, apart from aortic valve gradient, CMR EF1 was the only imaging or biochemical measure independently predictive of outcome. Indexed extracellular volume was associated with AVR or death, but not after adjusting for EF1. Conclusions EF1 is a simple robust marker of early left ventricular impairment that can be precisely measured by CMR and predicts outcome in aortic stenosis. Its measurement by CMR is more reproducible than that by TTE and may facilitate left ventricular structure–function analysis.


2016 ◽  
Vol 20 (2) ◽  
Author(s):  
Rebecca Schofield ◽  
Katia Manacho ◽  
Silvia Castelletti ◽  
James C. Moon

Hypertrophic cardiomyopathy (HCM) is the most common inherited cardiac disease. Cardiac imaging plays a key role in the diagnosis and management, with cardiovascular magnetic resonance (CMR) an important modality. CMR provides a number of different techniques in one examination: structure and function, flow imaging and tissue characterisation particularly with the late gadolinium enhancement (LGE) technique. Other techniques include vasodilator perfusion, mapping (especially T1 mapping and extracellular volume quantification [ECV]) and diffusion-weighted imaging with its potential to detect disarray. Clinically, the uses of CMR are diverse. The imaging must be considered within the context of work-up, particularly the personal and family history, Electrocardiogram (ECG) and echocardiogram findings. Subtle markers of possible HCM can be identified in genotype positive left ventricular hypertrophy (LVH)-negative subjects. CMR has particular advantages for assessment of the left ventricle (LV) apex and is able to detect both missed LVH (apical and basal antero-septum), when the echocardiography is normal but the ECG abnormal. CMR is important in distinguishing HCM from both common phenocopies (hypertensive heart disease, athletic adaptation, ageing related changes) and rarer pheno and/or genocopies such as Fabry disease and amyloidosis. For these, in particular the LGE technique and T1 mapping are very useful with a low T1 in Fabry’s, and high T1 and very high ECV in amyloidosis. Moreover, the tissue characterisation that is possible using CMR offers a potential role in patient risk stratification, as scar is a very strong predictor of future heart failure. Scar may also play a role in the prediction of sudden death. CMR is helpful in follow-up assessment, especially after septal alcohol ablation and myomectomy.


2020 ◽  
Vol 22 (1) ◽  
Author(s):  
Savine C. S. Minderhoud ◽  
Nikki van der Velde ◽  
Jolanda J. Wentzel ◽  
Rob J. van der Geest ◽  
Mohammed Attrach ◽  
...  

Abstract Background Cardiovascular magnetic resonance (CMR) phase contrast (PC) flow measurements suffer from phase offset errors. Background subtraction based on stationary phantom measurements can most reliably be used to overcome this inaccuracy. Stationary tissue correction is an alternative and does not require additional phantom scanning. The aim of this study was 1) to compare measurements with and without stationary tissue correction to phantom corrected measurements on different GE Healthcare CMR scanners using different software packages and 2) to evaluate the clinical implications of these methods. Methods CMR PC imaging of both the aortic and pulmonary artery flow was performed in patients on three different 1.5 T CMR scanners (GE Healthcare) using identical scan parameters. Uncorrected, first, second and third order stationary tissue corrected flow measurement were compared to phantom corrected flow measurements, our reference method, using Medis QFlow, Circle cvi42 and MASS software. The optimal (optimized) stationary tissue order was determined per scanner and software program. Velocity offsets, net flow, clinically significant difference (deviation > 10% net flow), and regurgitation severity were assessed. Results Data from 175 patients (28 (17–38) years) were included, of which 84% had congenital heart disease. First, second and third order and optimized stationary tissue correction did not improve the velocity offsets and net flow measurements. Uncorrected measurements resulted in the least clinically significant differences in net flow compared to phantom corrected data. Optimized stationary tissue correction per scanner and software program resulted in net flow differences (> 10%) in 19% (MASS) and 30% (Circle cvi42) of all measurements compared to 18% (MASS) and 23% (Circle cvi42) with no correction. Compared to phantom correction, regurgitation reclassification was the least common using uncorrected data. One CMR scanner performed worse and significant net flow differences of > 10% were present both with and without stationary tissue correction in more than 30% of all measurements. Conclusion Phase offset errors had a significant impact on net flow quantification, regurgitation assessment and varied greatly between CMR scanners. Background phase correction using stationary tissue correction worsened accuracy compared to no correction on three GE Healthcare CMR scanners. Therefore, careful assessment of phase offset errors at each individual scanner is essential to determine whether routine use of phantom correction is necessary. Trial registration Observational Study


Sign in / Sign up

Export Citation Format

Share Document