scholarly journals Erratum to: P2X7R blockade prevents NLRP3 inflammasome activation and brain injury in a rat model of intracerebral hemorrhage: involvement of peroxynitrite

2016 ◽  
Vol 13 (1) ◽  
Author(s):  
Liang Feng ◽  
Yizhao Chen ◽  
Rui Ding ◽  
Zhenghao Fu ◽  
Shuo Yang ◽  
...  
2018 ◽  
Vol 15 (3) ◽  
pp. 186-192 ◽  
Author(s):  
Qianchao He ◽  
Lingfei Jiang ◽  
Shanshan Man ◽  
Lin Wu ◽  
Yueqiang Hu ◽  
...  

2020 ◽  
Vol 21 (11) ◽  
pp. 3740 ◽  
Author(s):  
Claudia Espinosa-Garcia ◽  
Fahim Atif ◽  
Seema Yousuf ◽  
Iqbal Sayeed ◽  
Gretchen N. Neigh ◽  
...  

NOD-like receptor pyrin domain containing 3 (NLRP3) inflammasome inhibition and autophagy induction attenuate inflammation and improve outcome in rodent models of cerebral ischemia. However, the impact of chronic stress on NLRP3 inflammasome and autophagic response to ischemia remains unknown. Progesterone (PROG), a neuroprotective steroid, shows promise in reducing excessive inflammation associated with poor outcome in ischemic brain injury patients with comorbid conditions, including elevated stress. Stress primes microglia, mainly by the release of alarmins such as high-mobility group box-1 (HMGB1). HMGB1 activates the NLRP3 inflammasome, resulting in pro-inflammatory interleukin (IL)-1β production. In experiment 1, adult male Sprague-Dawley rats were exposed to social defeat stress for 8 days and then subjected to global ischemia by the 4-vessel occlusion model, a clinically relevant brain injury associated with cardiac arrest. PROG was administered 2 and 6 h after occlusion and then daily for 7 days. Animals were killed at 7 or 14 days post-ischemia. Here, we show that stress and global ischemia exert a synergistic effect in HMGB1 release, resulting in exacerbation of NLRP3 inflammasome activation and autophagy impairment in the hippocampus of ischemic animals. In experiment 2, an in vitro inflammasome assay, primary microglia isolated from neonatal brain tissue, were primed with lipopolysaccharide (LPS) and stimulated with adenosine triphosphate (ATP), displaying impaired autophagy and increased IL-1β production. In experiment 3, hippocampal microglia isolated from stressed and unstressed animals, were stimulated ex vivo with LPS, exhibiting similar changes than primary microglia. Treatment with PROG reduced HMGB1 release and NLRP3 inflammasome activation, and enhanced autophagy in stressed and unstressed ischemic animals. Pre-treatment with an autophagy inhibitor blocked Progesterone’s (PROG’s) beneficial effects in microglia. Our data suggest that modulation of microglial priming is one of the molecular mechanisms by which PROG ameliorates ischemic brain injury under stressful conditions.


2017 ◽  
Vol 2017 ◽  
pp. 1-18 ◽  
Author(s):  
Merry W. Ma ◽  
Jing Wang ◽  
Krishnan M. Dhandapani ◽  
Darrell W. Brann

Traumatic brain injury (TBI) is a leading cause of death and disability worldwide. After the initial primary mechanical injury, a complex secondary injury cascade involving oxidative stress and neuroinflammation follows, which may exacerbate the injury and complicate the healing process. NADPH oxidase 2 (NOX2) is a major contributor to oxidative stress in TBI pathology, and inhibition of NOX2 is neuroprotective. The NLRP3 inflammasome can become activated in response to oxidative stress, but little is known about the role of NOX2 in regulating NLRP3 inflammasome activation following TBI. In this study, we utilized NOX2 knockout mice to study the role of NOX2 in mediating NLRP3 inflammasome expression and activation following a controlled cortical impact. Expression of NLRP3 inflammasome components NLRP3 and apoptosis-associated speck-like protein containing a CARD (ASC), as well as its downstream products cleaved caspase-1 and interleukin-1β (IL-1β), was robustly increased in the injured cerebral cortex following TBI. Deletion of NOX2 attenuated the expression, assembly, and activity of the NLRP3 inflammasome via a mechanism that was associated with TXNIP, a sensor of oxidative stress. The results support the notion that NOX2-dependent inflammasome activation contributes to TBI pathology.


Sign in / Sign up

Export Citation Format

Share Document