scholarly journals Reduced immune-regulatory molecule expression on human colonic memory CD4 T cells in older adults

2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Stephanie M. Dillon ◽  
Tezha A. Thompson ◽  
Allison J. Christians ◽  
Martin D. McCarter ◽  
Cara C. Wilson

Abstract Background The etiology of the low-level chronic inflammatory state associated with aging is likely multifactorial, but a number of animal and human studies have implicated a functional decline of the gastrointestinal immune system as a potential driver. Gut tissue-resident memory T cells play critical roles in mediating protective immunity and in maintaining gut homeostasis, yet few studies have investigated the effect of aging on human gut T cell immunity. To determine if aging impacted CD4 T cell immunity in the human large intestine, we utilized multi-color flow cytometry to measure colonic lamina propria (LP) CD4 T cell frequencies and immune-modulatory marker expression in younger (mean ± SEM: 38 ± 1.5 yrs) and older (77 ± 1.6 yrs) adults. To determine cellular specificity, we evaluated colon LP CD8 T cell frequency and phenotype in the same donors. To probe tissue specificity, we evaluated the same panel of markers in peripheral blood (PB) CD4 T cells in a separate cohort of similarly aged persons. Results Frequencies of colonic CD4 T cells as a fraction of total LP mononuclear cells were higher in older persons whereas absolute numbers of colonic LP CD4 T cells per gram of tissue were similar in both age groups. LP CD4 T cells from older versus younger persons exhibited reduced CTLA-4, PD-1 and Ki67 expression. Levels of Bcl-2, CD57, CD25 and percentages of activated CD38+HLA-DR+ CD4 T cells were similar in both age groups. In memory PB CD4 T cells, older age was only associated with increased CD57 expression. Significant age effects for LP CD8 T cells were only observed for CTLA-4 expression, with lower levels of expression observed on cells from older adults. Conclusions Greater age was associated with reduced expression of the co-inhibitory receptors CTLA-4 and PD-1 on LP CD4 T cells. Colonic LP CD8 T cells from older persons also displayed reduced CTLA-4 expression. These age-associated profiles were not observed in older PB memory CD4 T cells. The decline in co-inhibitory receptor expression on colonic LP T cells may contribute to local and systemic inflammation via a reduced ability to limit ongoing T cell responses to enteric microbial challenge.

Cancers ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1687
Author(s):  
Magalie Dosset ◽  
Andrea Castro ◽  
Hannah Carter ◽  
Maurizio Zanetti

Telomerase reverse transcriptase (TERT) is a conserved self-tumor antigen which is overexpressed in most tumors and plays a critical role in tumor formation and progression. As such, TERT is an antigen of great relevance to develop widely applicable immunotherapies. CD4 T cells play a major role in the anti-cancer response alone or with other effector cells such as CD8 T cells and NK cells. To date, efforts have been made to identify TERT peptides capable of stimulating CD4 T cells that are also able to bind diverse MHC-II alleles to ease immune status monitoring and immunotherapies. Here, we review the current status of TERT biology, TERT/MHC-II immunobiology, and past and current vaccine clinical trials. We propose that monitoring CD4 T cell immunity against TERT is a simple and direct way to assess immune surveillance in cancer patients and a new way to predict the response to immune checkpoint inhibitors (ICPi). Finally, we present the initial results of a systematic discovery of TERT peptides able to bind the most common HLA Class II alleles worldwide and show that the repertoire of MHC-II TERT peptides is wider than currently appreciated.


2021 ◽  
Author(s):  
Jennifer Juno ◽  
Kathleen Wragg ◽  
Wen Shi Lee ◽  
Thakshila Amarasena ◽  
Arnold Reynaldi ◽  
...  

Abstract CD4+ T cells play a critical role in the immune response to viral infection. SARS-CoV-2 infection and vaccination elicit strong CD4+ T cell responses to the viral spike protein, including circulating T follicular helper (cTFH) cells that correlate with the development of neutralising antibodies. Here we use a novel HLA-DRB1*15:01/S751 tetramer to precisely track spike-specific CD4+ T cells following recovery from mild/moderate COVID-19, or after vaccination with spike-encoding vaccines. SARS-CoV-2 infection induces robust S751-specific responses with both CXCR5- and cTFH phenotypes that are maintained for at least 12 months in a stable, CXCR3-biased, central memory pool. Vaccination of immunologically naïve subjects similarly drives expansion of S751-specific T cells with a highly restricted TCR repertoire comprised of both public and private clonotypes. Vaccination of convalescent individuals drives recall of CD4+ T cell clones established during infection, which are shared between the CXCR5- and cTFH compartments. This recall response is evident 5 days after antigen exposure and includes a population of spike-specific cTFH that persist in the periphery after losing expression of PD-1. Overall this study demonstrates the generation of a stable pool of cTFH and memory CD4+ T cells that can be recalled upon spike antigen re-exposure, which may play an important role in long-term protection against SARS-CoV-2 infection.


2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A770-A770
Author(s):  
Michael Brown ◽  
Zachary McKay ◽  
Yuanfan Yang ◽  
Darell Bigner ◽  
Smita Nair ◽  
...  

BackgroundPVSRIPO, a recombinant poliovirus derived from the live-attenuated Sabin oral polio vaccine strain, is being tested in multi-institutional phase II clinical trials for recurrent glioblastoma (NCT04479241) and unresectable, PD-1 refractory melanoma (NCT04577807) in combination with PD1 blockade. PVSRIPO capsid is identical to the Sabin vaccine strain and >99% identical to the inactivated Polio vaccine (IPOL, Salk), against which public health mandated childhood vaccination is near universal. In non-vaccinated mice, PVSRIPO mediates antitumor efficacy in a replication-dependent manner via engaging innate inflammation and antitumor T cells. Accordingly, it is anticipated that pre-existing immunity to PVSRIPO impedes antitumor therapy. However, recent evidence indicates that immunological 'recall', or reactivation of memory T cells, may mediate anti-tumor effects.MethodsThe impact of prior polio vs control (KLH) vaccination on intratumor viral replication, tumor inflammation, and overall tumor growth after intratumor PVSRIPO therapy was assessed in murine tumor models. The role of polio capsid and tetanus recall antigens in mediating intratumor inflammation and antitumor efficacy was similarly studied in mice non-permissive to PVSRIPO infection. To mechanistically define antitumor effects of polio recall, B cell and CD8 T cell knockout mice were used, in addition to adoptive transfer of CD4+ T cells from vaccinated mice. Intratumor polio or tetanus recall antigen therapy was performed after OT-I transfer (OVA-specific T cells) in the B16-OVA melanoma model to gauge antitumor T cell activity. Lastly, the inflammatory effects of polio and tetanus antigens was tested in human peripheral blood mononuclear cells (PBMCs).ResultsDespite curtailing intratumor viral replication, prior polio vaccination in mice potentiated subsequent antitumor efficacy of PVSRIPO. Intratumor recall responses induced by polio and tetanus antigens also delayed tumor growth. Recall antigen therapy was associated with marked intratumor influx of eosinophils, conventional CD4+ T cells, and increased expression of IFN-g, TNF, and Granzyme B in tumor infiltrating T cells. The antitumor efficacy of polio recall antigen was mediated by CD4+ T cells, partially depended upon CD8+ T cells, and was impaired by B cells. Both polio and tetanus recall antigen therapy bolstered the antitumor function of tumor-specific OT-I CD8+ T cells. Polio and tetanus antigens induced CXCL10 and type I/II/III IFNs in PBMCs in vitro.ConclusionsChildhood vaccine-specific CD4+ T cells hold cancer immunotherapy potential. In the context of PVSRIPO therapy, antitumor and inflammatory effects of polio vaccine-specific CD4+ T cell recall supersedes inhibitory effects of attenuated intratumor viral replication, and represents a novel mechanism of action.Ethics ApprovalThe animal work described in this study was approved by the Duke University IACUC.


Vaccines ◽  
2020 ◽  
Vol 8 (4) ◽  
pp. 706
Author(s):  
Chunmei Fu ◽  
Li Zhou ◽  
Qing-Sheng Mi ◽  
Aimin Jiang

As the sentinels of the immune system, dendritic cells (DCs) play a critical role in initiating and regulating antigen-specific immune responses. Cross-priming, a process that DCs activate CD8 T cells by cross-presenting exogenous antigens onto their MHCI (Major Histocompatibility Complex class I), plays a critical role in mediating CD8 T cell immunity as well as tolerance. Current DC vaccines have remained largely unsuccessful despite their ability to potentiate both effector and memory CD8 T cell responses. There are two major hurdles for the success of DC-based vaccines: tumor-mediated immunosuppression and the functional limitation of the commonly used monocyte-derived dendritic cells (MoDCs). Due to their resistance to tumor-mediated suppression as inert vesicles, DC-derived exosomes (DCexos) have garnered much interest as cell-free therapeutic agents. However, current DCexo clinical trials have shown limited clinical benefits and failed to generate antigen-specific T cell responses. Another exciting development is the use of naturally circulating DCs instead of in vitro cultured DCs, as clinical trials with both human blood cDC2s (type 2 conventional DCs) and plasmacytoid DCs (pDCs) have shown promising results. pDC vaccines were particularly encouraging, especially in light of promising data from a recent clinical trial using a human pDC cell line, despite pDCs being considered tolerogenic and playing a suppressive role in tumors. However, how pDCs generate anti-tumor CD8 T cell immunity remains poorly understood, thus hindering their clinical advance. Using a pDC-targeted vaccine model, we have recently reported that while pDC-targeted vaccines led to strong cross-priming and durable CD8 T cell immunity, cross-presenting pDCs required cDCs to achieve cross-priming in vivo by transferring antigens to cDCs. Antigen transfer from pDCs to bystander cDCs was mediated by pDC-derived exosomes (pDCexos), which similarly required cDCs for cross-priming of antigen-specific CD8 T cells. pDCexos thus represent a new addition in our arsenal of DC-based cancer vaccines that would potentially combine the advantage of pDCs and DCexos.


2020 ◽  
Vol 117 (32) ◽  
pp. 19408-19414 ◽  
Author(s):  
Michael P. Crawford ◽  
Sushmita Sinha ◽  
Pranav S. Renavikar ◽  
Nicholas Borcherding ◽  
Nitin J. Karandikar

Untoward effector CD4+ T cell responses are kept in check by immune regulatory mechanisms mediated by CD4+ and CD8+ T cells. CD4+ T helper 17 (Th17) cells, characterized by IL-17 production, play important roles in the pathogenesis of autoimmune diseases (such as arthritis, multiple sclerosis, psoriasis, inflammatory bowel disease, among others) and in the host response to infection and cancer. Here, we demonstrate that human CD4+ T cells cells exposed to a Th17-differentiating milieu are significantly more resistant to immune suppression by CD8+ T cells compared to control Th0 cells. This resistance is mediated, in part, through the action of IL-17A, IL-17F, and IL-17AF heterodimer through their receptors (IL-17RA and IL-17RC) on CD4+ T cells themselves, but not through their action on CD8+ T cells or APC. We further show that IL-17 can directly act on non-Th17 effector CD4+ T cells to induce suppressive resistance, and this resistance can be reversed by blockade of IL-1β, IL-6, or STAT3. These studies reveal a role for IL-17 cytokines in mediating CD4-intrinsic immune resistance. The pathways induced in this process may serve as a critical target for future investigation and immunotherapeutic intervention.


2020 ◽  
Vol 5 (51) ◽  
pp. eabb5590 ◽  
Author(s):  
Heather M. Ren ◽  
Elizabeth M. Kolawole ◽  
Mingqiang Ren ◽  
Ge Jin ◽  
Colleen S. Netherby-Winslow ◽  
...  

Development of tissue-resident memory (TRM) CD8 T cells depends on CD4 T cells. In polyomavirus central nervous system infection, brain CXCR5hi PD-1hi CD4 T cells produce interleukin-21 (IL-21), and CD8 T cells lacking IL-21 receptors (IL21R−/−) fail to become bTRM. IL-21+ CD4 T cells exhibit elevated T cell receptor (TCR) affinity and higher TCR density. IL21R−/− brain CD8 T cells do not express CD103, depend on vascular CD8 T cells for maintenance, are antigen recall defective, and lack TRM core signature genes. CD4 T cell–deficient and IL21R−/− brain CD8 T cells show similar deficiencies in expression of genes for oxidative metabolism, and intrathecal delivery of IL-21 to CD4 T cell–depleted mice restores expression of electron transport genes in CD8 T cells to wild-type levels. Thus, high-affinity CXCR5hi PD-1hi CD4 T cells in the brain produce IL-21, which drives CD8 bTRM differentiation in response to a persistent viral infection.


2020 ◽  
Vol 94 (24) ◽  
Author(s):  
Hannah Voic ◽  
Rory D. de Vries ◽  
John Sidney ◽  
Paul Rubiro ◽  
Erin Moore ◽  
...  

ABSTRACT Infections with varicella-zoster virus (VZV) are associated with a range of clinical manifestations. Primary infection with VZV causes chicken pox. The virus remains latent in neurons, and it can reactivate later in life, causing herpes zoster (HZ). Two different vaccines have been developed to prevent HZ; one is based on a live attenuated VZV strain (Zostavax), and the other is based on adjuvanted gE recombinant protein (Shingrix). While Zostavax efficacy wanes with age, Shingrix protection retains its efficacy in elderly subjects (individuals 80 years of age and older). In this context, it is of much interest to understand if there is a role for T cell immunity in the differential clinical outcome and if there is a correlate of protection between T cell immunity and Shingrix efficacy. In this study, we characterized the Shingrix-specific ex vivo CD4 T cell responses in the context of natural exposure and HZ vaccination using pools of predicted epitopes. We show that T cell reactivity following natural infection and Zostavax vaccination dominantly targets nonstructural (NS) proteins, while Shingrix vaccination redirects dominant reactivity to target gE. We mapped the gE-specific responses following Shingrix vaccination to 89 different gE epitopes, 34 of which accounted for 80% of the response. Using antigen presentation assays and single HLA molecule-transfected lines, we experimentally determined HLA restrictions for 94 different donor/peptide combinations. Finally, we used our results as a training set to assess strategies to predict restrictions based on measured or predicted HLA binding and the corresponding HLA types of the responding subjects. IMPORTANCE Understanding the T cell profile associated with the protection observed in elderly vaccinees following Shingrix vaccination is relevant to the general definition of correlates of vaccine efficacy. Our study enables these future studies by clarifying the patterns of immunodominance associated with Shingrix vaccination, as opposed to natural infection or Zostavax vaccination. Identification of epitopes recognized by Shingrix-induced CD4 T cells and their associated HLA restrictions enables the generation of tetrameric staining reagents and, more broadly, the capability to characterize the specificity, magnitude, and phenotype of VZV-specific T cells.


2020 ◽  
Vol 11 ◽  
Author(s):  
Sophie Steiner ◽  
Franziska Sotzny ◽  
Sandra Bauer ◽  
Il-Kang Na ◽  
Michael Schmueck-Henneresse ◽  
...  

The inability of patients with CVID to mount specific antibody responses to pathogens has raised concerns on the risk and severity of SARS-CoV-2 infection, but there might be a role for protective T cells in these patients. SARS-CoV-2 reactive T cells have been reported for SARS-CoV-2 unexposed healthy individuals. Until now, there is no data on T cell immunity to SARS-CoV-2 infection in CVID. This study aimed to evaluate reactive T cells to human endemic corona viruses (HCoV) and to study pre-existing SARS-CoV-2 reactive T cells in unexposed CVID patients. We evaluated SARS-CoV-2- and HCoV-229E and –OC43 reactive T cells in response to seven peptide pools, including spike and nucleocapsid (NCAP) proteins, in 11 unexposed CVID, 12 unexposed and 11 post COVID-19 healthy controls (HC). We further characterized reactive T cells by IFNγ, TNFα and IL-2 profiles. SARS-CoV-2 spike-reactive CD4+ T cells were detected in 7 of 11 unexposed CVID patients, albeit with fewer multifunctional (IFNγ/TNFα/IL-2) cells than unexposed HC. CVID patients had no SARS-CoV-2 NCAP reactive CD4+ T cells and less reactive CD8+ cells compared to unexposed HC. We observed a correlation between T cell reactivity against spike of SARS-CoV-2 and HCoVs in unexposed, but not post COVID-19 HC, suggesting cross-reactivity. T cell responses in post COVID-19 HC could be distinguished from unexposed HC by higher frequencies of triple-positive NCAP reactive CD4+ T cells. Taken together, SARS-CoV-2 reactive T cells are detectable in unexposed CVID patients albeit with lower recognition frequencies and polyfunctional potential. Frequencies of triple-functional reactive CD4+ cells might provide a marker to distinguish HCoV cross-reactive from SARS-CoV-2 specific T cell responses. Our data provides evidence, that anti-viral T cell immunity is not relevantly impaired in most CVID patients.


Sign in / Sign up

Export Citation Format

Share Document