scholarly journals Prediction and detection of freezing of gait in Parkinson’s disease from plantar pressure data using long short-term memory neural-networks

Author(s):  
Gaurav Shalin ◽  
Scott Pardoel ◽  
Edward D. Lemaire ◽  
Julie Nantel ◽  
Jonathan Kofman

Abstract Background Freezing of gait (FOG) is a walking disturbance in advanced stage Parkinson’s disease (PD) that has been associated with increased fall risk and decreased quality of life. Freezing episodes can be mitigated or prevented with external intervention such as visual or auditory cues, activated by FOG prediction and detection systems. While most research on FOG detection and prediction has been based on inertial measurement unit (IMU) and accelerometer data, plantar-pressure data may capture subtle weight shifts unique to FOG episodes. Different machine learning algorithms have been used for FOG detection and prediction; however, long short-term memory (LSTM) deep learning methods hold an advantage when dealing with time-series data, such as sensor data. This research aimed to determine if LSTM can be used to detect and predict FOG from plantar pressure data alone, specifically for use in a real-time wearable system. Methods Plantar pressure data were collected from pressure-sensing insole sensors worn by 11 participants with PD as they walked a predefined freeze-provoking path. FOG instances were labelled, 16 features were extracted, and the dataset was balanced and normalized (z-score). The resulting datasets were classified using long short-term memory neural-network models. Separate models were trained for detection and prediction. For prediction models, data before FOG were included in the target class. Leave-one-freezer-out cross validation was used for model evaluation. In addition, the models were tested on all non-freezer data to determine model specificity. Results The best FOG detection model had 82.1% (SD 6.2%) mean sensitivity and 89.5% (SD 3.6%) mean specificity for one-freezer-held-out cross validation. Specificity improved to 93.3% (SD 4.0%) when ignoring inactive state data (standing) and analyzing the model only on active states (turning and walking). The model correctly detected 95% of freeze episodes. The best FOG prediction method achieved 72.5% (SD 13.6%) mean sensitivity and 81.2% (SD 6.8%) mean specificity for one-freezer-held-out cross validation. Conclusions Based on FOG data collected in a laboratory, the results suggest that plantar pressure data can be used for FOG detection and prediction. However, further research is required to improve FOG prediction performance, including training with a larger sample of people who experience FOG.

Energies ◽  
2020 ◽  
Vol 13 (18) ◽  
pp. 4696
Author(s):  
Seil Ki ◽  
Ilsik Jang ◽  
Booho Cha ◽  
Jeonggyu Seo ◽  
Oukwang Kwon

This study proposes a data-driven method based on recurrent neural networks (RNNs) with long short-term memory (LSTM) cells for restoring missing pressure data from a gas production well. Pressure data recorded by gauges installed at the bottom hole and wellhead of a production well often contain abnormal or missing values as a result of gauge malfunctions, noise, outliers, and operational instability. RNNs employing LSTM cells to prevent long-term memory loss have been widely used to predict time series data. In this study, an RNN with the LSTM method was used to restore abnormal or missing wellhead and bottom-hole pressures in three intervals within a production sequence of more than eight years in duration. The pressure restoration was performed using various input features for RNNs with LSTM models based on the characteristics of the available data. It was carried out through three sequential processes and the results were acceptable with a mean absolute percentage error no more than 5.18%. The reliability of the proposed method was verified through a comparison with the results of a physical model.


Sensors ◽  
2020 ◽  
Vol 20 (23) ◽  
pp. 6727
Author(s):  
Youmin Kim ◽  
Ahyoung Choi

Recently, studies that analyze emotions based on physiological signals, such as electroencephalogram (EEG), by applying a deep learning algorithm have been actively conducted. However, the study of sequence modeling considering the change of emotional signals over time has not been fully investigated. To consider long-term interaction of emotion, in this study, we propose a long short-term memory network to consider changes in emotion over time and apply an attention mechanism to assign weights to the emotional states appearing at specific moments based on the peak–end rule in psychology. We used 32-channel EEG data from the DEAP database. Two-level (low and high) and three-level (low, middle, and high) classification experiments were performed on the valence and arousal emotion models. The results show accuracies of 90.1% and 87.9% using the two-level classification for the valence and arousal models with four-fold cross validation, respectively. In the case of the three-level classification, these values were obtained as 83.5% and 82.6%, respectively. Additional experiments were conducted using a network combining a convolutional neural network (CNN) submodule with the proposed model. The obtained results showed accuracies of 90.1% and 88.3% in the case of the two-level classification and 86.9% and 84.1% in the case of the three-level classification for the valence and arousal models with four-fold cross validation, respectively. In 10-fold cross validation, there were 91.8% for valence and 91.6% for arousal accuracy, respectively.


2020 ◽  
Vol 131 ◽  
pp. 23-29 ◽  
Author(s):  
Amira S. Ashour ◽  
Amira El-Attar ◽  
Nilanjan Dey ◽  
Hatem Abd El-Kader ◽  
Mostafa M. Abd El-Naby

Author(s):  
Redy Indrawan ◽  
Siti Saadah ◽  
Prasti Eko Yunanto

Diabetes Mellitus is one of the preeminent causes of death to date. Effective procedures are necessary to prevent diabetes and avoid complications that may cause early death. A common approach is to control patient blood glucose, which necessitates a periodic measurement of blood glucose concentration. This study developed a blood glucose prediction system using a convolutional long short-term memory (Conv-LSTM) algorithm. Conv-LSTM is a variation of LSTM algorithms that are suitable for use in time series problems. Conv-LSTM overcomes the lack in the LSTM algorithm because the latter algorithm cannot access the content of previous memory cells when its output gate has closed. We tested the algorithm and varied the experiment to check the effect of the cross-validation ratio between 70:30 and 80:20. The study indicates that the cross-validation using a ratio of 70:30 data split is more stable compared to one with 80:20 data split. The best result shows a measure of 21.44 in RMSE and 8.73 in MAE. With the application of conv-LSTM using correct parameters and selected data split, our experiment attains accuracy comparable to the regular LSTM.


2020 ◽  
Author(s):  
Abdolreza Nazemi ◽  
Johannes Jakubik ◽  
Andreas Geyer-Schulz ◽  
Frank J. Fabozzi

Sign in / Sign up

Export Citation Format

Share Document